Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation
Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications;...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 20; no. 1; pp. 166 - 176 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2014.2380454 |
Cover
Loading…
Abstract | Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time. |
---|---|
AbstractList | Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time. Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time.Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time. |
Author | Xiangyang Zhu Xinjun Sheng Jiayuan He Dingguo Zhang Jianwei Liu |
Author_xml | – sequence: 1 givenname: Jianwei surname: Liu fullname: Liu, Jianwei – sequence: 2 givenname: Xinjun surname: Sheng fullname: Sheng, Xinjun – sequence: 3 givenname: Dingguo surname: Zhang fullname: Zhang, Dingguo – sequence: 4 givenname: Jiayuan surname: He fullname: He, Jiayuan – sequence: 5 givenname: Xiangyang surname: Zhu fullname: Zhu, Xiangyang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25532196$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctKJDEYhYMo42V8ABkYCty46Tb3Spba3nGYQVwOhFTyFxOprvQkVYt-e9N2twsXYjYJyXcO5P8O0W4fe0DohOApIVifP1ze3U8pJnxKmcJc8B10QIlUE0qx2t2eieb76DjnF1yWKldafkP7VAhWnuQB-vsEfnTgqysbumX1BM52oUl2CLGvYlv9WkbowA0puOpPinn4BznkatbZnEMbIOXq0uaSL_hVnNvQVxfeLoa3gu9or7VdhuPNfoSeb66fZ3eTx9-397OLx4njRAwTJjBIAk1dC-laoZzAUgtPlFe4bjUBjn2jObPcSw_K1co2WFipmoaDBHaEzta1ixT_j5AHMw_ZQdfZHuKYDamVpJhRTL-ASqG5rDH5Aiq4oJxSUdDTD-hLHFNfvryiGCNUK1monxtqbObgzSKFuU1Ls5VRgHoNuDLonKA1LqwHOaRixxBsVubNyrxZmTcb8yVJPiS35Z9lfqwzAQDeeamVEESxV2Jntkc |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1016_j_micpro_2020_103059 crossref_primary_10_1016_j_cmpb_2020_105721 crossref_primary_10_1007_s00221_018_5441_x crossref_primary_10_1016_j_bspc_2023_105600 crossref_primary_10_1088_1741_2552_ad184f crossref_primary_10_1109_TNSRE_2023_3346462 crossref_primary_10_1109_TNSRE_2019_2896269 crossref_primary_10_3389_fnbot_2018_00058 crossref_primary_10_3390_s21227500 crossref_primary_10_1109_TNSRE_2022_3144323 crossref_primary_10_3390_mi14091697 crossref_primary_10_1016_j_bspc_2019_101572 crossref_primary_10_1016_j_bspc_2024_106188 crossref_primary_10_3390_s22155507 crossref_primary_10_21307_ijssis_2018_005 crossref_primary_10_1109_JSEN_2024_3354307 crossref_primary_10_1088_1741_2552_ad4af7 crossref_primary_10_1109_TNSRE_2018_2838448 crossref_primary_10_1016_j_bspc_2021_102482 crossref_primary_10_1109_JBHI_2022_3159792 crossref_primary_10_1088_1361_6579_ad9a37 crossref_primary_10_1109_TNSRE_2023_3295453 crossref_primary_10_3389_fnbot_2022_1061201 crossref_primary_10_3390_s17061370 crossref_primary_10_1088_1741_2552_aaa8a4 crossref_primary_10_1016_j_eswa_2024_124373 crossref_primary_10_3389_fnins_2017_00379 crossref_primary_10_3389_fnbot_2021_699174 crossref_primary_10_1109_THMS_2022_3179956 crossref_primary_10_1109_TBME_2016_2641584 crossref_primary_10_1109_JBHI_2018_2867539 crossref_primary_10_1007_s11045_020_00710_7 crossref_primary_10_1109_TNSRE_2016_2562180 crossref_primary_10_1016_j_eswa_2016_05_031 crossref_primary_10_1109_ACCESS_2020_3027497 crossref_primary_10_1109_JBHI_2022_3197831 crossref_primary_10_1109_TNSRE_2019_2946625 crossref_primary_10_1109_TII_2017_2779814 crossref_primary_10_1016_j_bspc_2019_101791 crossref_primary_10_1109_JBHI_2023_3238406 crossref_primary_10_1109_RBME_2021_3078190 crossref_primary_10_1109_TNSRE_2019_2962189 crossref_primary_10_1016_j_is_2025_102540 crossref_primary_10_1109_TNSRE_2020_3038374 crossref_primary_10_1109_JAS_2021_1003865 crossref_primary_10_1038_s41587_020_0662_5 crossref_primary_10_1093_nsr_nwad048 crossref_primary_10_1109_JSEN_2022_3179472 crossref_primary_10_1109_JSEN_2023_3327999 crossref_primary_10_1109_JSEN_2023_3266872 |
Cites_doi | 10.1016/j.bspc.2007.09.002 10.1109/JBHI.2013.2249590 10.1109/IEMBS.2010.5627288 10.1109/TNSRE.2013.2243470 10.1109/TNSRE.2009.2023282 10.1109/JBHI.2013.2261311 10.1109/TKDE.2009.191 10.1016/S0363-5023(05)80278-3 10.1109/TNSRE.2014.2305111 10.1186/1743-0003-8-25 10.1109/JBHI.2013.2256920 10.1109/10.204774 10.1080/03093640600994581 10.1682/JRRD.2010.08.0161 10.1109/ICRA.2011.5980079 10.1109/TBME.2006.889192 10.1109/TSA.2002.1011533 10.1109/TBME.2003.813539 10.1109/TRO.2012.2226386 10.1016/j.eswa.2013.02.023 10.1109/EMBC.2012.6346318 10.1109/TBME.2006.883628 10.1007/978-3-540-77413-6_11 10.1007/BF02523219 10.1016/j.medengphy.2009.10.016 10.1016/j.bspc.2014.07.007 10.1109/TBME.2008.2005485 10.1007/978-3-642-40852-6_40 10.1007/978-94-017-8932-5_1 10.1142/S0219477512500289 10.1007/s10916-010-9548-2 10.1109/TNSRE.2013.2279737 10.1080/10255842.2010.515211 10.1214/aoms/1177729893 10.1109/MSP.2012.2203480 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2014.2380454 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic Engineering Research Database MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 176 |
ExternalDocumentID | 3912011501 25532196 10_1109_JBHI_2014_2380454 6985518 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program 973 Program of China grantid: 2011CB013305 – fundername: National Natural Science Foundation of China grantid: 51375296; 51121063 funderid: 10.13039/501100001809 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 11JC1406000; 13430721600 funderid: 10.13039/501100003399 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c415t-350e61eb7756cf58c50695d18d807f91e40db943a4d6de8c78ab05a68bb4e6e3 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Sep 05 09:47:37 EDT 2025 Sun Aug 24 03:00:01 EDT 2025 Fri Sep 05 06:13:05 EDT 2025 Mon Jun 30 04:56:09 EDT 2025 Thu Apr 03 07:02:17 EDT 2025 Tue Jul 01 02:59:53 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Tue Aug 26 16:42:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | linear discriminant analysis (LDA) polynomial classifier (PC) surface electromyography (sEMG) Domain adaptation (DA) pattern recognition |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-350e61eb7756cf58c50695d18d807f91e40db943a4d6de8c78ab05a68bb4e6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25532196 |
PQID | 1753312986 |
PQPubID | 85417 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1765946701 pubmed_primary_25532196 proquest_miscellaneous_1786203202 crossref_citationtrail_10_1109_JBHI_2014_2380454 proquest_journals_1753312986 proquest_miscellaneous_1754524225 crossref_primary_10_1109_JBHI_2014_2380454 ieee_primary_6985518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Jan. 2016-1-00 2016-Jan 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 naik (ref18) 2014 boschmann (ref29) 0 ref15 ref14 lock (ref43) 2005 ref31 fukunaga (ref37) 1990 ref30 ref33 ref11 ref32 ref10 golub (ref35) 2012; 3 ref2 ref1 ref39 ref17 ref16 ref19 scott (ref3) 1966; 47 liu (ref8) 0 crammer (ref36) 2002; 2 ref24 ref45 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 parker (ref4) 1985; 13 ref28 ref27 ref7 ref9 ref6 ref5 liu (ref38) 0 ref40 |
References_xml | – ident: ref9 doi: 10.1016/j.bspc.2007.09.002 – ident: ref15 doi: 10.1109/JBHI.2013.2249590 – ident: ref27 doi: 10.1109/IEMBS.2010.5627288 – ident: ref24 doi: 10.1109/TNSRE.2013.2243470 – ident: ref25 doi: 10.1109/TNSRE.2009.2023282 – ident: ref10 doi: 10.1109/JBHI.2013.2261311 – ident: ref31 doi: 10.1109/TKDE.2009.191 – volume: 13 start-page: 283 year: 1985 ident: ref4 article-title: Myoelectric control of prostheses publication-title: Crit Rev Biomed Eng – ident: ref5 doi: 10.1016/S0363-5023(05)80278-3 – ident: ref30 doi: 10.1109/TNSRE.2014.2305111 – ident: ref42 doi: 10.1186/1743-0003-8-25 – volume: 3 year: 2012 ident: ref35 publication-title: Matrix Computations – year: 0 ident: ref29 article-title: Towards multi-movement hand prostheses: Combining adaptive classification with high precision sockets publication-title: Proc 2nd Eur Conf Technically Assisted Rehabil – ident: ref16 doi: 10.1109/JBHI.2013.2256920 – start-page: 14 year: 0 ident: ref38 article-title: Boosting training for myoelectric pattern recognition using mixed-LDA publication-title: Proc IEEE 36th Annu Int Conf Eng Med Biol Soc – ident: ref6 doi: 10.1109/10.204774 – ident: ref1 doi: 10.1080/03093640600994581 – ident: ref2 doi: 10.1682/JRRD.2010.08.0161 – volume: 2 start-page: 265 year: 2002 ident: ref36 article-title: On the algorithmic implementation of multiclass Kernel-based vector machines publication-title: J Mach Learn Res – ident: ref22 doi: 10.1109/ICRA.2011.5980079 – ident: ref14 doi: 10.1109/TBME.2006.889192 – year: 1990 ident: ref37 publication-title: Introduction to statistical pattern recognition – ident: ref34 doi: 10.1109/TSA.2002.1011533 – ident: ref12 doi: 10.1109/TBME.2003.813539 – ident: ref32 doi: 10.1109/TRO.2012.2226386 – ident: ref41 doi: 10.1016/j.eswa.2013.02.023 – volume: 47 start-page: 174 year: 1966 ident: ref3 article-title: Myoelectric control of prostheses publication-title: Arch Phys Med Rehabil – ident: ref23 doi: 10.1109/EMBC.2012.6346318 – year: 2014 ident: ref18 article-title: Non negative matrix factorization for the identification of EMG finger movements: Evaluation using matrix analysis publication-title: IEEE J Biomed Health Informat – ident: ref33 doi: 10.1109/TBME.2006.883628 – ident: ref39 doi: 10.1007/978-3-540-77413-6_11 – ident: ref13 doi: 10.1007/BF02523219 – ident: ref11 doi: 10.1016/j.medengphy.2009.10.016 – ident: ref17 doi: 10.1016/j.bspc.2014.07.007 – ident: ref7 doi: 10.1109/TBME.2008.2005485 – ident: ref26 doi: 10.1007/978-3-642-40852-6_40 – start-page: 122 year: 2005 ident: ref43 article-title: Real-time myoelectric control in a virtual environment to relate usability vs. accuracy publication-title: Proc Myoelectric Symp – ident: ref20 doi: 10.1007/978-94-017-8932-5_1 – ident: ref40 doi: 10.1142/S0219477512500289 – ident: ref19 doi: 10.1007/s10916-010-9548-2 – ident: ref44 doi: 10.1109/TNSRE.2013.2279737 – start-page: 5746 year: 0 ident: ref8 article-title: A new feature extraction method based on autoregressive power spectrum for improving sEMG classification publication-title: Proc IEEE 35th Annu Int Conf Eng Med Biol Soc – ident: ref21 doi: 10.1080/10255842.2010.515211 – ident: ref45 doi: 10.1214/aoms/1177729893 – ident: ref28 doi: 10.1109/MSP.2012.2203480 |
SSID | ssj0000816896 |
Score | 2.3812373 |
Snippet | Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP)... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 166 |
SubjectTerms | Adaptation Adaptation models Amputees Artificial Limbs Calibration Classification Classifiers Data models Discriminant Analysis domain adaptation Electromyography - methods Electromyography - standards Feature extraction Female Humans linear discriminant analysis Male Middle Aged Pattern recognition Pattern Recognition, Automated - methods patternrecognition polynomial classifier Polynomials Prostheses Prosthetics Reuse Signal Processing, Computer-Assisted - instrumentation Surface electromyography (sEMG) Surgical implants Training Usability Vectors |
Title | Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation |
URI | https://ieeexplore.ieee.org/document/6985518 https://www.ncbi.nlm.nih.gov/pubmed/25532196 https://www.proquest.com/docview/1753312986 https://www.proquest.com/docview/1754524225 https://www.proquest.com/docview/1765946701 https://www.proquest.com/docview/1786203202 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSAuvMojpSAjcUJk6yS2Yx9bSrVUWoRQkXpAivwUESWp2N1D--sZO9lIIFhxs5KxZHs8mm889nwAr41UpSu1yVWtec5qbXP8YHMdSk2xhytCzOguPor5F3Z-yS934O30FsZ7ny6f-Vlsply-6-06HpUdCSVjAbFd2MXAbXirNZ2nJAKJRMdVYiNHQ2RjErOg6uj8ZP4h3uNiM3RRsepcLALMeYVi4jePlChW_o02k9c5uw-LzXiHyybfZ-uVmdnbP0o5_u-EHsC9EX6S42G_PIQd3z2CO4sxwb4PXz_HUq7ekVPdXt0QBJU6BdRRfaQPZHHTD8Q5rSWf4oORb37ZLkmi1mxDpNUmJ-gXHUHx0_6Hbjty7PT1kO9_DBdn7y_ezfORgCG36NdXecWpF4U3dc2FDVxaToXirpBO0jqowjPqjGKVZk44L20ttaFcC2kM88JXT2Cv6zv_DAgTTCHyoU5qhwFhqWQIUiBkrqRGBBkyoBsdNHYsTh45Mq6aFKRQ1UQNNlGDzajBDN5MXa6HyhzbhPfj6k-C48JncLhRdDPa7rKJtUsrhEFSZPBq-o1WF1MpuvP9Oskwjuim5NtkBFfoh2ixTQYjysRhn8HTYaNNY9zsz4O_j_053MUZjsdBh7C3-rn2LxAgrczLZBm_AIxpCMI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VIgEXCpRCoICROCGydRLbsY_9oNqWpkJokXpAihzbERElqdjdQ_n1jJ1sJFC74mYlY8n2eDRvPPY8gHeVVKlNdRWrXPOY5drE-MHEuk41xR42qX1GtzgX06_s9IJfbMCH8S2Mcy5cPnMT3wy5fNuZpT8q2xNK-gJid-Au-n2m-tda44lKoJAIhFwpNmI0RTakMROq9k4Ppif-JheboJPyded8GWDOMxQTf_mkQLJyO94Mfud4C4rViPvrJj8my0U1Mb__Keb4v1N6BA8HAEr2-x3zGDZc-wTuFUOKfRu-ffHFXJ0lR7q5vCYIK3UIqb0CSVeT4rrrqXMaQz77JyPf3byZk0Cu2dSeWJscoGe0BMWPup-6acm-1Vd9xv8pzI4_zg6n8UDBEBv07Is449SJxFV5zoWpuTScCsVtIq2kea0Sx6itFMs0s8I6aXKpK8q1kFXFnHDZDmy2XeueA2GCKcQ-1EptMSRMlaxrKRA0Z1IjhqwjoCsdlGYoT-5ZMi7LEKZQVXoNll6D5aDBCN6PXa762hzrhLf96o-Cw8JHsLtSdDlY77z01UszBEJSRPB2_I1255MpunXdMsgwjvgm5etkBFfoiWiyTgZjysBiH8GzfqONY1ztzxc3j_0N3J_OirPy7OT800t4gLMdDod2YXPxa-leIVxaVK-DlfwBleEMEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+Daily+Recalibration+of+Myoelectric+Prosthesis+Classifiers+Based+on+Domain+Adaptation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Jianwei+Liu&rft.au=Xinjun+Sheng&rft.au=Dingguo+Zhang&rft.au=Jiayuan+He&rft.date=2016-01-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=20&rft.issue=1&rft.spage=166&rft.epage=176&rft_id=info:doi/10.1109%2FJBHI.2014.2380454&rft_id=info%3Apmid%2F25532196&rft.externalDocID=6985518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |