Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation

Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications;...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 20; no. 1; pp. 166 - 176
Main Authors Liu, Jianwei, Sheng, Xinjun, Zhang, Dingguo, He, Jiayuan, Zhu, Xiangyang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2014.2380454

Cover

Loading…
Abstract Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time.
AbstractList Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time.
Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time.Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time.
Author Xiangyang Zhu
Xinjun Sheng
Jiayuan He
Dingguo Zhang
Jianwei Liu
Author_xml – sequence: 1
  givenname: Jianwei
  surname: Liu
  fullname: Liu, Jianwei
– sequence: 2
  givenname: Xinjun
  surname: Sheng
  fullname: Sheng, Xinjun
– sequence: 3
  givenname: Dingguo
  surname: Zhang
  fullname: Zhang, Dingguo
– sequence: 4
  givenname: Jiayuan
  surname: He
  fullname: He, Jiayuan
– sequence: 5
  givenname: Xiangyang
  surname: Zhu
  fullname: Zhu, Xiangyang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25532196$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKJDEYhYMo42V8ABkYCty46Tb3Spba3nGYQVwOhFTyFxOprvQkVYt-e9N2twsXYjYJyXcO5P8O0W4fe0DohOApIVifP1ze3U8pJnxKmcJc8B10QIlUE0qx2t2eieb76DjnF1yWKldafkP7VAhWnuQB-vsEfnTgqysbumX1BM52oUl2CLGvYlv9WkbowA0puOpPinn4BznkatbZnEMbIOXq0uaSL_hVnNvQVxfeLoa3gu9or7VdhuPNfoSeb66fZ3eTx9-397OLx4njRAwTJjBIAk1dC-laoZzAUgtPlFe4bjUBjn2jObPcSw_K1co2WFipmoaDBHaEzta1ixT_j5AHMw_ZQdfZHuKYDamVpJhRTL-ASqG5rDH5Aiq4oJxSUdDTD-hLHFNfvryiGCNUK1monxtqbObgzSKFuU1Ls5VRgHoNuDLonKA1LqwHOaRixxBsVubNyrxZmTcb8yVJPiS35Z9lfqwzAQDeeamVEESxV2Jntkc
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_micpro_2020_103059
crossref_primary_10_1016_j_cmpb_2020_105721
crossref_primary_10_1007_s00221_018_5441_x
crossref_primary_10_1016_j_bspc_2023_105600
crossref_primary_10_1088_1741_2552_ad184f
crossref_primary_10_1109_TNSRE_2023_3346462
crossref_primary_10_1109_TNSRE_2019_2896269
crossref_primary_10_3389_fnbot_2018_00058
crossref_primary_10_3390_s21227500
crossref_primary_10_1109_TNSRE_2022_3144323
crossref_primary_10_3390_mi14091697
crossref_primary_10_1016_j_bspc_2019_101572
crossref_primary_10_1016_j_bspc_2024_106188
crossref_primary_10_3390_s22155507
crossref_primary_10_21307_ijssis_2018_005
crossref_primary_10_1109_JSEN_2024_3354307
crossref_primary_10_1088_1741_2552_ad4af7
crossref_primary_10_1109_TNSRE_2018_2838448
crossref_primary_10_1016_j_bspc_2021_102482
crossref_primary_10_1109_JBHI_2022_3159792
crossref_primary_10_1088_1361_6579_ad9a37
crossref_primary_10_1109_TNSRE_2023_3295453
crossref_primary_10_3389_fnbot_2022_1061201
crossref_primary_10_3390_s17061370
crossref_primary_10_1088_1741_2552_aaa8a4
crossref_primary_10_1016_j_eswa_2024_124373
crossref_primary_10_3389_fnins_2017_00379
crossref_primary_10_3389_fnbot_2021_699174
crossref_primary_10_1109_THMS_2022_3179956
crossref_primary_10_1109_TBME_2016_2641584
crossref_primary_10_1109_JBHI_2018_2867539
crossref_primary_10_1007_s11045_020_00710_7
crossref_primary_10_1109_TNSRE_2016_2562180
crossref_primary_10_1016_j_eswa_2016_05_031
crossref_primary_10_1109_ACCESS_2020_3027497
crossref_primary_10_1109_JBHI_2022_3197831
crossref_primary_10_1109_TNSRE_2019_2946625
crossref_primary_10_1109_TII_2017_2779814
crossref_primary_10_1016_j_bspc_2019_101791
crossref_primary_10_1109_JBHI_2023_3238406
crossref_primary_10_1109_RBME_2021_3078190
crossref_primary_10_1109_TNSRE_2019_2962189
crossref_primary_10_1016_j_is_2025_102540
crossref_primary_10_1109_TNSRE_2020_3038374
crossref_primary_10_1109_JAS_2021_1003865
crossref_primary_10_1038_s41587_020_0662_5
crossref_primary_10_1093_nsr_nwad048
crossref_primary_10_1109_JSEN_2022_3179472
crossref_primary_10_1109_JSEN_2023_3327999
crossref_primary_10_1109_JSEN_2023_3266872
Cites_doi 10.1016/j.bspc.2007.09.002
10.1109/JBHI.2013.2249590
10.1109/IEMBS.2010.5627288
10.1109/TNSRE.2013.2243470
10.1109/TNSRE.2009.2023282
10.1109/JBHI.2013.2261311
10.1109/TKDE.2009.191
10.1016/S0363-5023(05)80278-3
10.1109/TNSRE.2014.2305111
10.1186/1743-0003-8-25
10.1109/JBHI.2013.2256920
10.1109/10.204774
10.1080/03093640600994581
10.1682/JRRD.2010.08.0161
10.1109/ICRA.2011.5980079
10.1109/TBME.2006.889192
10.1109/TSA.2002.1011533
10.1109/TBME.2003.813539
10.1109/TRO.2012.2226386
10.1016/j.eswa.2013.02.023
10.1109/EMBC.2012.6346318
10.1109/TBME.2006.883628
10.1007/978-3-540-77413-6_11
10.1007/BF02523219
10.1016/j.medengphy.2009.10.016
10.1016/j.bspc.2014.07.007
10.1109/TBME.2008.2005485
10.1007/978-3-642-40852-6_40
10.1007/978-94-017-8932-5_1
10.1142/S0219477512500289
10.1007/s10916-010-9548-2
10.1109/TNSRE.2013.2279737
10.1080/10255842.2010.515211
10.1214/aoms/1177729893
10.1109/MSP.2012.2203480
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2014.2380454
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
Engineering Research Database
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 176
ExternalDocumentID 3912011501
25532196
10_1109_JBHI_2014_2380454
6985518
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Basic Research Program 973 Program of China
  grantid: 2011CB013305
– fundername: National Natural Science Foundation of China
  grantid: 51375296; 51121063
  funderid: 10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 11JC1406000; 13430721600
  funderid: 10.13039/501100003399
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c415t-350e61eb7756cf58c50695d18d807f91e40db943a4d6de8c78ab05a68bb4e6e3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Sep 05 09:47:37 EDT 2025
Sun Aug 24 03:00:01 EDT 2025
Fri Sep 05 06:13:05 EDT 2025
Mon Jun 30 04:56:09 EDT 2025
Thu Apr 03 07:02:17 EDT 2025
Tue Jul 01 02:59:53 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
Tue Aug 26 16:42:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords linear discriminant analysis (LDA)
polynomial classifier (PC)
surface electromyography (sEMG)
Domain adaptation (DA)
pattern recognition
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-350e61eb7756cf58c50695d18d807f91e40db943a4d6de8c78ab05a68bb4e6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25532196
PQID 1753312986
PQPubID 85417
PageCount 11
ParticipantIDs proquest_miscellaneous_1765946701
pubmed_primary_25532196
proquest_miscellaneous_1786203202
crossref_citationtrail_10_1109_JBHI_2014_2380454
proquest_journals_1753312986
proquest_miscellaneous_1754524225
crossref_primary_10_1109_JBHI_2014_2380454
ieee_primary_6985518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jan.
2016-1-00
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
naik (ref18) 2014
boschmann (ref29) 0
ref15
ref14
lock (ref43) 2005
ref31
fukunaga (ref37) 1990
ref30
ref33
ref11
ref32
ref10
golub (ref35) 2012; 3
ref2
ref1
ref39
ref17
ref16
ref19
scott (ref3) 1966; 47
liu (ref8) 0
crammer (ref36) 2002; 2
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
parker (ref4) 1985; 13
ref28
ref27
ref7
ref9
ref6
ref5
liu (ref38) 0
ref40
References_xml – ident: ref9
  doi: 10.1016/j.bspc.2007.09.002
– ident: ref15
  doi: 10.1109/JBHI.2013.2249590
– ident: ref27
  doi: 10.1109/IEMBS.2010.5627288
– ident: ref24
  doi: 10.1109/TNSRE.2013.2243470
– ident: ref25
  doi: 10.1109/TNSRE.2009.2023282
– ident: ref10
  doi: 10.1109/JBHI.2013.2261311
– ident: ref31
  doi: 10.1109/TKDE.2009.191
– volume: 13
  start-page: 283
  year: 1985
  ident: ref4
  article-title: Myoelectric control of prostheses
  publication-title: Crit Rev Biomed Eng
– ident: ref5
  doi: 10.1016/S0363-5023(05)80278-3
– ident: ref30
  doi: 10.1109/TNSRE.2014.2305111
– ident: ref42
  doi: 10.1186/1743-0003-8-25
– volume: 3
  year: 2012
  ident: ref35
  publication-title: Matrix Computations
– year: 0
  ident: ref29
  article-title: Towards multi-movement hand prostheses: Combining adaptive classification with high precision sockets
  publication-title: Proc 2nd Eur Conf Technically Assisted Rehabil
– ident: ref16
  doi: 10.1109/JBHI.2013.2256920
– start-page: 14
  year: 0
  ident: ref38
  article-title: Boosting training for myoelectric pattern recognition using mixed-LDA
  publication-title: Proc IEEE 36th Annu Int Conf Eng Med Biol Soc
– ident: ref6
  doi: 10.1109/10.204774
– ident: ref1
  doi: 10.1080/03093640600994581
– ident: ref2
  doi: 10.1682/JRRD.2010.08.0161
– volume: 2
  start-page: 265
  year: 2002
  ident: ref36
  article-title: On the algorithmic implementation of multiclass Kernel-based vector machines
  publication-title: J Mach Learn Res
– ident: ref22
  doi: 10.1109/ICRA.2011.5980079
– ident: ref14
  doi: 10.1109/TBME.2006.889192
– year: 1990
  ident: ref37
  publication-title: Introduction to statistical pattern recognition
– ident: ref34
  doi: 10.1109/TSA.2002.1011533
– ident: ref12
  doi: 10.1109/TBME.2003.813539
– ident: ref32
  doi: 10.1109/TRO.2012.2226386
– ident: ref41
  doi: 10.1016/j.eswa.2013.02.023
– volume: 47
  start-page: 174
  year: 1966
  ident: ref3
  article-title: Myoelectric control of prostheses
  publication-title: Arch Phys Med Rehabil
– ident: ref23
  doi: 10.1109/EMBC.2012.6346318
– year: 2014
  ident: ref18
  article-title: Non negative matrix factorization for the identification of EMG finger movements: Evaluation using matrix analysis
  publication-title: IEEE J Biomed Health Informat
– ident: ref33
  doi: 10.1109/TBME.2006.883628
– ident: ref39
  doi: 10.1007/978-3-540-77413-6_11
– ident: ref13
  doi: 10.1007/BF02523219
– ident: ref11
  doi: 10.1016/j.medengphy.2009.10.016
– ident: ref17
  doi: 10.1016/j.bspc.2014.07.007
– ident: ref7
  doi: 10.1109/TBME.2008.2005485
– ident: ref26
  doi: 10.1007/978-3-642-40852-6_40
– start-page: 122
  year: 2005
  ident: ref43
  article-title: Real-time myoelectric control in a virtual environment to relate usability vs. accuracy
  publication-title: Proc Myoelectric Symp
– ident: ref20
  doi: 10.1007/978-94-017-8932-5_1
– ident: ref40
  doi: 10.1142/S0219477512500289
– ident: ref19
  doi: 10.1007/s10916-010-9548-2
– ident: ref44
  doi: 10.1109/TNSRE.2013.2279737
– start-page: 5746
  year: 0
  ident: ref8
  article-title: A new feature extraction method based on autoregressive power spectrum for improving sEMG classification
  publication-title: Proc IEEE 35th Annu Int Conf Eng Med Biol Soc
– ident: ref21
  doi: 10.1080/10255842.2010.515211
– ident: ref45
  doi: 10.1214/aoms/1177729893
– ident: ref28
  doi: 10.1109/MSP.2012.2203480
SSID ssj0000816896
Score 2.3812373
Snippet Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 166
SubjectTerms Adaptation
Adaptation models
Amputees
Artificial Limbs
Calibration
Classification
Classifiers
Data models
Discriminant Analysis
domain adaptation
Electromyography - methods
Electromyography - standards
Feature extraction
Female
Humans
linear discriminant analysis
Male
Middle Aged
Pattern recognition
Pattern Recognition, Automated - methods
patternrecognition
polynomial classifier
Polynomials
Prostheses
Prosthetics
Reuse
Signal Processing, Computer-Assisted - instrumentation
Surface electromyography (sEMG)
Surgical implants
Training
Usability
Vectors
Title Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation
URI https://ieeexplore.ieee.org/document/6985518
https://www.ncbi.nlm.nih.gov/pubmed/25532196
https://www.proquest.com/docview/1753312986
https://www.proquest.com/docview/1754524225
https://www.proquest.com/docview/1765946701
https://www.proquest.com/docview/1786203202
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSAuvMojpSAjcUJk6yS2Yx9bSrVUWoRQkXpAivwUESWp2N1D--sZO9lIIFhxs5KxZHs8mm889nwAr41UpSu1yVWtec5qbXP8YHMdSk2xhytCzOguPor5F3Z-yS934O30FsZ7ny6f-Vlsply-6-06HpUdCSVjAbFd2MXAbXirNZ2nJAKJRMdVYiNHQ2RjErOg6uj8ZP4h3uNiM3RRsepcLALMeYVi4jePlChW_o02k9c5uw-LzXiHyybfZ-uVmdnbP0o5_u-EHsC9EX6S42G_PIQd3z2CO4sxwb4PXz_HUq7ekVPdXt0QBJU6BdRRfaQPZHHTD8Q5rSWf4oORb37ZLkmi1mxDpNUmJ-gXHUHx0_6Hbjty7PT1kO9_DBdn7y_ezfORgCG36NdXecWpF4U3dc2FDVxaToXirpBO0jqowjPqjGKVZk44L20ttaFcC2kM88JXT2Cv6zv_DAgTTCHyoU5qhwFhqWQIUiBkrqRGBBkyoBsdNHYsTh45Mq6aFKRQ1UQNNlGDzajBDN5MXa6HyhzbhPfj6k-C48JncLhRdDPa7rKJtUsrhEFSZPBq-o1WF1MpuvP9Oskwjuim5NtkBFfoh2ixTQYjysRhn8HTYaNNY9zsz4O_j_053MUZjsdBh7C3-rn2LxAgrczLZBm_AIxpCMI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VIgEXCpRCoICROCGydRLbsY_9oNqWpkJokXpAihzbERElqdjdQ_n1jJ1sJFC74mYlY8n2eDRvPPY8gHeVVKlNdRWrXPOY5drE-MHEuk41xR42qX1GtzgX06_s9IJfbMCH8S2Mcy5cPnMT3wy5fNuZpT8q2xNK-gJid-Au-n2m-tda44lKoJAIhFwpNmI0RTakMROq9k4Ppif-JheboJPyded8GWDOMxQTf_mkQLJyO94Mfud4C4rViPvrJj8my0U1Mb__Keb4v1N6BA8HAEr2-x3zGDZc-wTuFUOKfRu-ffHFXJ0lR7q5vCYIK3UIqb0CSVeT4rrrqXMaQz77JyPf3byZk0Cu2dSeWJscoGe0BMWPup-6acm-1Vd9xv8pzI4_zg6n8UDBEBv07Is449SJxFV5zoWpuTScCsVtIq2kea0Sx6itFMs0s8I6aXKpK8q1kFXFnHDZDmy2XeueA2GCKcQ-1EptMSRMlaxrKRA0Z1IjhqwjoCsdlGYoT-5ZMi7LEKZQVXoNll6D5aDBCN6PXa762hzrhLf96o-Cw8JHsLtSdDlY77z01UszBEJSRPB2_I1255MpunXdMsgwjvgm5etkBFfoiWiyTgZjysBiH8GzfqONY1ztzxc3j_0N3J_OirPy7OT800t4gLMdDod2YXPxa-leIVxaVK-DlfwBleEMEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+Daily+Recalibration+of+Myoelectric+Prosthesis+Classifiers+Based+on+Domain+Adaptation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Jianwei+Liu&rft.au=Xinjun+Sheng&rft.au=Dingguo+Zhang&rft.au=Jiayuan+He&rft.date=2016-01-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=20&rft.issue=1&rft.spage=166&rft.epage=176&rft_id=info:doi/10.1109%2FJBHI.2014.2380454&rft_id=info%3Apmid%2F25532196&rft.externalDocID=6985518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon