Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation

Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications;...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 20; no. 1; pp. 166 - 176
Main Authors Liu, Jianwei, Sheng, Xinjun, Zhang, Dingguo, He, Jiayuan, Zhu, Xiangyang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2014.2380454

Cover

Loading…
More Information
Summary:Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2014.2380454