A newly developed highly selective ratiometric fluoride ion sensor: Spectroscopic, NMR and density functional studies

A new easy-to-synthesize chemosensor, 3,3'-bis(indolyl)-4-chlorophenylmethane (hereafter S), was designed, synthesized and employed as a selective optical chemosensor for fluoride ions.(1)H NMR and density functional studies on the system have been carried out to determine the nature of the int...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 137; no. 5; pp. 1247 - 1251
Main Authors Mallick, Arabinda, Roy, Ujjal Kanti, Haldar, Basudeb, Pratihar, Sanjay
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new easy-to-synthesize chemosensor, 3,3'-bis(indolyl)-4-chlorophenylmethane (hereafter S), was designed, synthesized and employed as a selective optical chemosensor for fluoride ions.(1)H NMR and density functional studies on the system have been carried out to determine the nature of the interaction between S and X(-) (X = inorganic anions) responsible for the significant fluoride-induced changes in the absorption properties of S. The experimental results reveal that abstraction of an acidic proton of S by the fluoride ion, leading to the formation of anionic species, is responsible for the spectral changes. These changes allow signaling for the fluoride ion to detect and estimate the concentration of fluoride ion present even at the submicromolar level, accurate up to 2 μM. Calculations of the transition energies of S, S(-), and S···F(-) (hydrogen bonded complex) show that only S(-) is responsible for the long-wavelength absorption band in the presence of F(-).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2654
1364-5528
1364-5528
DOI:10.1039/c2an16132j