One-step synthesis of micro-/mesoporous SnO2 spheres by solvothermal method for toluene gas sensor

A facile solvothermal synthesis in an ethanol/acetic acid mixture for the fabrication of SnO2 with a controllable hierarchical spherical size and micro-/mesoporosity is presented. SEM, TEM and N2 adsorption/desorption investigation unveiled that the obtained SnO2 spheres exhibited a particle size in...

Full description

Saved in:
Bibliographic Details
Published inCeramics international Vol. 45; no. 12; pp. 15435 - 15444
Main Authors Hermawan, Angga, Asakura, Yusuke, Inada, Miki, Yin, Shu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A facile solvothermal synthesis in an ethanol/acetic acid mixture for the fabrication of SnO2 with a controllable hierarchical spherical size and micro-/mesoporosity is presented. SEM, TEM and N2 adsorption/desorption investigation unveiled that the obtained SnO2 spheres exhibited a particle size in the range of 0.6–1.6 μm and a pore size of about 1.4–1.9 nm depending on the volume ratio of acetic acid to ethanol in the reaction mixture, and the spheres were constructed by nanoscale particles. Due to its micro-/mesoporous structure, the SnO2 spheres exhibited large specific surface areas over 100 m2/g. When 10 vol. % of acetic acid at 200 °C for 20 h was used for the reaction, the obtained SnO2 possessed a higher specific surface area of 145 m2/g (SnO2_10). The gas sensing property of SnO2_10 without an additional noble metal co-catalyst exhibited a large toluene sensing response (Ra/Rg) of 20.2 at 400 °C, which was about 6 times higher and acceptable selectivity compared to those of other samples. The study found that the sensing performance in the SnO2 hierarchical spheres was influenced by several factors e.g. particle morphology, pore size and specific surface area rather than only a single parameter. Therefore, a precise control of those influencing parameters may lead to the optimum sensing property. These findings are important for the further development of the micro-/mesoporous metal-based oxide as an alternative successor for toluene gas sensor material. Micro-/mesoporous SnO2 with a controllable particle size and pore-diameter synthesized by our novel process has exhibited a high responsivity to toluene gas. [Display omitted] •A hierarchical nanostructure of SnO2 spheres with micro-/mesoporosity were successfully synthesized by a novel organic solution process.•The pore diameter, particle size and specific surface area of SnO2 can be controlled by adjusting the vol. % of acetic acid to ethanol.•The synthesized SnO2 showed a large surface area of 145 m2/g with pore size distribution of 1.4 nm.•The highest toluene sensing response (Ra/Rg) of the micro-/mesoporous SnO2 was 20.2 in 50 ppm of toluene.•The gas sensing response are influenced by particle size, pore diameter as well as specific surface area.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2019.05.043