N3 and O2 Protonated Conformers of the Cytosine Mononucleotides Coexist in the Gas Phase
The gas-phase conformations of the protonated forms of the DNA and RNA cytosine mononucleotides, [pdCyd+H] + and [pCyd+H] + , are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy over the IR fingerprint and hydrogen-stretching regions complemented by electronic structure...
Saved in:
Published in | Journal of the American Society for Mass Spectrometry Vol. 28; no. 8; pp. 1638 - 1646 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The gas-phase conformations of the protonated forms of the DNA and RNA cytosine mononucleotides, [pdCyd+H]
+
and [pCyd+H]
+
, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy over the IR fingerprint and hydrogen-stretching regions complemented by electronic structure calculations. The low-energy conformations of [pdCyd+H]
+
and [pCyd+H]
+
and their relative stabilities are computed at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers allow the conformers present in the experiments to be determined. Similar to that found in previous IRMPD action spectroscopy studies of the protonated forms of the cytosine nucleosides, [dCyd+H]
+
and [Cyd+H]
+
, both N3 and O2 protonated cytosine mononucleotides exhibiting an
anti
orientation of cytosine are found to coexist in the experimental population. The 2'-hydroxyl substituent does not significantly influence the most stable conformations of [pCyd+H]
+
versus those of [pdCyd+H]
+
, as the IRMPD spectral profiles of [pdCyd+H]
+
and [pCyd+H]
+
are similar. However, the presence of the 2'-hydroxyl substituent does influence the relative intensities of the measured IRMPD bands. Comparisons to IRMPD spectroscopy studies of the deprotonated forms of the cytosine mononucleotides, [pdCyd–H]
–
and [pCyd–H]
–
, provide insight into the effects of protonation versus deprotonation on the conformational features of the nucleobase and sugar moieties. Likewise, comparisons to results of IRMPD spectroscopy studies of the protonated cytosine nucleosides provide insight into the influence of the phosphate moiety on structure. Comparison with previous ion mobility results shows the superiority of IRMPD spectroscopy for distinguishing various protonation sites.
Graphical Abstract
ᅟ |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1007/s13361-017-1653-8 |