Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression

Nitric oxide (NO)-related activity has been shown to be protective against Plasmodium falciparum in vitro. It has been hypothesized, however, that excess NO production contributes to the pathogenesis of cerebral malaria. The purpose of this study was to compare markers of NO production [urinary and...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 184; no. 2; pp. 557 - 567
Main Authors Anstey, N M, Weinberg, J B, Hassanali, M Y, Mwaikambo, E D, Manyenga, D, Misukonis, M A, Arnelle, D R, Hollis, D, McDonald, M I, Granger, D L
Format Journal Article
LanguageEnglish
Published United States The Rockefeller University Press 01.08.1996
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nitric oxide (NO)-related activity has been shown to be protective against Plasmodium falciparum in vitro. It has been hypothesized, however, that excess NO production contributes to the pathogenesis of cerebral malaria. The purpose of this study was to compare markers of NO production [urinary and plasma nitrate + nitrite (NOx)], leukocyte-inducible nitric oxide synthase type 2 (NOS2), and plasma TNF-alpha and IL-10 levels with disease severity in 191 Tanzanian children with and without malaria. Urine NOx excretion and plasma NOx levels (corrected for renal impairment) were inversely related to disease severity, with levels highest in subclinical infection and lowest in fatal cerebral malaria. Results could not be explained by differences in dietary nitrate ingestion among the groups. Plasma levels of IL-10, a cytokine known to suppress NO synthesis, increased with disease severity. Leukocyte NOS2 antigen was detectable in all control children tested and in all those with subclinical infection, but was undetectable in all but one subject with cerebral malaria. This suppression of NO synthesis in cerebral malaria may contribute to pathogenesis. In contrast, high fasting NOx levels and leukocyte NOS2 in healthy controls and asymptomatic infection suggest that increased NO synthesis might protect against clinical disease. NO appears to have a protective rather than pathological role in African children with malaria.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.184.2.557