The Pathways to Create Containers for Bacteriophage Delivery

Antimicrobial resistance is a global public health threat. One of the possible ways to solve this problem is phage therapy, but the instability of bacteriophages hinders the development of this approach. A bacteriophage delivery system that stabilizes the phage is one of the possible solutions to th...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 3; p. 613
Main Authors Musin, Egor V., Kim, Aleksandr L., Dubrovskii, Alexey V., Ariskina, Elena V., Kudryashova, Ekaterina B., Tikhonenko, Sergey A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.02.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Antimicrobial resistance is a global public health threat. One of the possible ways to solve this problem is phage therapy, but the instability of bacteriophages hinders the development of this approach. A bacteriophage delivery system that stabilizes the phage is one of the possible solutions to this problem. This study is dedicated to exploring methods to create encapsulated forms of bacteriophages for delivery. We studied the effect of proteolytic enzymes on the destruction of the polyelectrolyte microcapsule shell and revealed that protease from Streptomyces griseus was able to destroy the membrane of the microcapsule (dextran sulfate/polyarginine)3 ((DS/PArg)3). In addition, the protease decreased the activity of the bacteriophage in the second hour of incubation, and the phage lost activity after 16 h. It was found that a medium with pH 9.02 did not affect the survival of the bacteriophage or E. coli. The bacteriophages were encapsulated into polyelectrolyte microcapsules (DS/PArg)3. It was established that it is impossible to use microcapsules as a means of delivering bacteriophages since the bacteriophages are inactivated. When bacteriophages were included inside a CaCO3 core, it was demonstrated that the phage retained activity before and after the dissolution of the CaCO3 particle. From the results of this study, we recommend using CaCO3 microparticles as a container for bacteriophage delivery through the acidic stomach barrier.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14030613