A multimodel regime for evaluating effectiveness of antimicrobial wound care products in microbial biofilms
Microbial biofilms have become increasingly recognized as a cause of wound chronicity. There are several topical antimicrobial wound care products available for use; however, their effectiveness has routinely been demonstrated with planktonic microorganisms. There is no target reference value for an...
Saved in:
Published in | Wound repair and regeneration Vol. 28; no. 4; pp. 438 - 447 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Microbial biofilms have become increasingly recognized as a cause of wound chronicity. There are several topical antimicrobial wound care products available for use; however, their effectiveness has routinely been demonstrated with planktonic microorganisms. There is no target reference value for antimicrobial effectiveness of wound care products in biofilm models. In addition, data on antimicrobial activity of products in biofilm models are scattered across many test methods in a variety of studies. The aim of this work is to directly compare commercial products containing the commonly used topical antimicrobial agents iodine, silver, polyhexamethylene biguanide, octenidine, hypochlorous acid, benzalkonium chloride, and a surfactant‐based topical containing poloxamer 188. Five different in vitro biofilm models of varied complexity were used, incorporating several bacterial pathogens such as Staphylococcus, Enterococcus, Streptococcus, Pseudomonas, Acinetobacter, Klebsiella, and Enterobacter. The fungal pathogens Candida albicans and Candida auris were also evaluated. A multispecies bacterial biofilm model was also used to evaluate the products. Additionally, C. albicans was used in combination with S. aureus and P. aeruginosa in a multikingdom version of the polymicrobial biofilm model. Statistically significant differences in antimicrobial performance were observed between treatments in each model and changing microbial growth conditions or combinations of organisms resulted in significant performance differences for some treatments. The iodine and benzalkonium chloride‐containing products were overall the most effective in vitro and were then selected for in vivo evaluation in an infected immunocompromised murine model. Unexpectedly, the iodine product was statistically (P > .05) no different than the untreated control, while the benzalkonium chloride containing product significantly (P < .05) reduced the biofilm compared to untreated control. This body of work demonstrates the importance of not only evaluating antimicrobial wound care products in biofilm models but also the importance of using several different models to gain a comprehensive understanding of products' effectiveness. |
---|---|
Bibliography: | Funding information 3M ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Funding information 3M |
ISSN: | 1067-1927 1524-475X |
DOI: | 10.1111/wrr.12806 |