Infrared multiphoton dissociation in quadrupole ion traps
The development of new ion activation techniques continues to be a dynamic area of scientific discovery, in part to complement the tremendous innovations in ionization methods that have allowed the mass spectrometric analysis of an enormous array of molecules. Ion activation/dissociation provides ke...
Saved in:
Published in | Mass spectrometry reviews Vol. 28; no. 3; pp. 390 - 424 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2009
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The development of new ion activation techniques continues to be a dynamic area of scientific discovery, in part to complement the tremendous innovations in ionization methods that have allowed the mass spectrometric analysis of an enormous array of molecules. Ion activation/dissociation provides key information about ion structures, binding energies, and differentiation of isomers, as well as affording a primary means of identifying compounds in mixtures. Numerous new activation methods have emerged over the past two decades in an effort to develop alternatives to collisional activated dissociation, the gold standard for providing structurally diagnostic fragmentation patterns. Collisional activated dissociation does not always offer sufficiently high or controllable energy deposition, thus rendering it less useful for certain classes of molecules, such as large proteins or macromolecular complexes. Photodissociation is one of the most promising alternatives and is readily implemented in ion trapping and time-of-flight mass spectrometers. Photodissociation generally entails using a laser to irradiate ions with UV, visible, or IR photons, thus resulting in internal energy deposition based on the number and wavelengths of the photons. The activation process can be extremely rapid and efficient, as well as having the potential for high total energy deposition. This review describes infrared multiphoton dissociation in quadrupole ion trap mass spectrometry. A comparison of photodissociation and collisional activated dissociation is covered, in addition to some of the methods to increase photodissociation efficiency. Numerous applications of IRMPD are discussed as well, including ones related to the analysis of drugs, peptides, nucleic acids, and oligosaccharides. |
---|---|
Bibliography: | http://dx.doi.org/10.1002/mas.20216 ArticleID:MAS20216 istex:3B3E28E190B4AFC1720994EC64E832E0121823E1 Welch Foundation - No. F1155 National Science Foundation - No. CHE-0718320 ark:/67375/WNG-5S9J7S8K-1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-2 |
ISSN: | 0277-7037 1098-2787 |
DOI: | 10.1002/mas.20216 |