Parallel Optimal Control for Weakly Coupled Nonlinear Systems Using Successive Galerkin Approximation

This technical note presents a new algorithm for the closed-loop parallel optimal control of weakly coupled nonlinear systems with respect to performance criteria using the successive Galerkin approximation (SGA). By using the weak coupling theory, the optimal control law can be obtained from two re...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 53; no. 6; pp. 1542 - 1547
Main Authors KIM, Young-Joong, LIM, Myo-Taeg
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This technical note presents a new algorithm for the closed-loop parallel optimal control of weakly coupled nonlinear systems with respect to performance criteria using the successive Galerkin approximation (SGA). By using the weak coupling theory, the optimal control law can be obtained from two reduced-order optimal control problems in parallel, but the resulting problem is difficult to solve for nonlinear systems. In order to overcome the difficulties inherent in the nonlinear optimal control problem, the parallel optimal control laws are constructed in terms of the approximated solutions to two independent Hamilton-Jacobi-Bellman equations using the SGA method. One of the purposes of this note is to design the closed-loop parallel optimal control law for the weakly coupled nonlinear systems using the SGA method. The second is to reduce the computational complexity when the SGA method is applied to the high-order weakly coupled systems.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2008.921047