An Investigation of In Vitro Anti-Cancer Efficacy of Dihydroartemisinin-Loaded Bovine Milk Exosomes Against Triple-Negative Breast Cancer
Repurposing drugs offers several advantages, including reduced time and cost compared to developing new drugs from scratch. It leverages existing knowledge about drug safety, dosage, and pharmacokinetics, expediting the process of clinical trials and regulatory approval. Dihydroartemisinin (DHA) is...
Saved in:
Published in | The AAPS journal Vol. 26; no. 5; p. 91 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
06.08.2024
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Repurposing drugs offers several advantages, including reduced time and cost compared to developing new drugs from scratch. It leverages existing knowledge about drug safety, dosage, and pharmacokinetics, expediting the process of clinical trials and regulatory approval. Dihydroartemisinin (DHA) is a semi-synthetic and active metabolite of all artemisinin molecules and is FDA-approved for the treatment of malaria. Apart from having anti-malarial properties, DHA also possesses anticancer properties. However, its pharmacological actions are limited by toxicity and solubility problems. To overcome these challenges and enhance its anticancer effectiveness, we designed an exosomal formulation of DHA. We isolated exosomes from bovine milk using differential ultracentrifugation and loaded DHA using sonication. Scanning and transition electron microscopy revealed a size of roughly 100 nm, with a spherical shape. Furthermore, in pH 7.4 and 5.5, the exosomes exhibited burst release followed by sustained release. Multiple
in vitro
cell culture tests demonstrated that Exo-DHA exhibited enhanced anticancer activity, including cytotoxicity, cellular uptake, generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, and inhibition of colony formation. Additional evidence supporting Exo-DHA's anti-migration ability came from transwell migration and scratch assays. Based on these results, it was concluded that the anticancer efficacy of DHA was improved when loaded into bovine milk-derived exosomes. While the
in vitro
results are encouraging, more
in vivo
testing in suitable animal models and biochemical marker analysis are warranted.
Graphical Abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1550-7416 1550-7416 |
DOI: | 10.1208/s12248-024-00958-y |