Diffusion in large networks

We investigate the phenomenon of diffusion in a countably infinite society of individuals interacting with their neighbors in a network. At a given time, each individual is either active or inactive. The diffusion is driven by two characteristics: the network structure and the diffusion mechanism re...

Full description

Saved in:
Bibliographic Details
Published inJournal of economic dynamics & control Vol. 139; p. 104439
Main Authors GRABISCH, Michel, RUSINOWSKA, Agnieszka, VENEL, Xavier
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate the phenomenon of diffusion in a countably infinite society of individuals interacting with their neighbors in a network. At a given time, each individual is either active or inactive. The diffusion is driven by two characteristics: the network structure and the diffusion mechanism represented by an aggregation function. We distinguish between two diffusion mechanisms (probabilistic, deterministic) and focus on two types of aggregation functions (strict, Boolean). Under strict aggregation functions, polarization of the society cannot happen, and its state evolves towards a mixture of infinitely many active and infinitely many inactive agents, or towards a homogeneous society. Under Boolean aggregation functions, the diffusion process becomes deterministic and the contagion model of Morris (2000) becomes a particular case of our framework. Polarization can then happen. Our dynamics also allows for cycles in both cases. The network structure is not relevant for these questions, but is important for establishing irreducibility, at the price of a richness assumption: the network should contain at least one complex star and have enough space for storing local configurations. Our model can be given a game-theoretic interpretation via a local coordination game, where each player would apply a best-response strategy in a random neighborhood.
ISSN:0165-1889
1879-1743
DOI:10.1016/j.jedc.2022.104439