Transverse damage in glass fiber reinforced polymer under thermo-mechanical loading

In this study, the thermomechanical damage behavior of a glass fiber reinforced polymer material is investigated. The coefficients of thermal expansion of the composite as well as the matrix are measured in a wide temperature range. Quasi-static experiments with neat resin, unidirectional and multid...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part C, Open access Vol. 5; p. 100147
Main Authors Kraus, David, Trappe, Volker
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, the thermomechanical damage behavior of a glass fiber reinforced polymer material is investigated. The coefficients of thermal expansion of the composite as well as the matrix are measured in a wide temperature range. Quasi-static experiments with neat resin, unidirectional and multidirectional laminates are performed as well as fatigue experiments in a temperature range from 213 K to 343 K. This study focusses on the matrix damage due to fiber-parallel loading. A correlation between matrix effort, the dilatational strain energy of the matrix and the damage state of the specimen is demonstrated. It is shown that a fatigue life assessment can be performed with the aid of a temperature-independent master fatigue curve.
ISSN:2666-6820
2666-6820
DOI:10.1016/j.jcomc.2021.100147