Prevention of lipopolysaccharide-induced mouse lethality by resveratrol

The present study was undertaken to determine whether subacute treatment with resveratrol (RVT) protects mice against lipopolysaccharide (LPS)-induced oxidative stress and mortality as well as the mechanism involved in such protection. Mice were divided into three groups: control, LPS and LPS+RVT. A...

Full description

Saved in:
Bibliographic Details
Published inFood and chemical toxicology Vol. 48; no. 6; pp. 1543 - 1549
Main Authors Sebai, Hichem, Sani, Mamane, Ghanem-Boughanmi, Néziha, Aouani, Ezzedine
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study was undertaken to determine whether subacute treatment with resveratrol (RVT) protects mice against lipopolysaccharide (LPS)-induced oxidative stress and mortality as well as the mechanism involved in such protection. Mice were divided into three groups: control, LPS and LPS+RVT. Animals were pre-treated with RVT during 7days. The survival rate was monitored over 48h after LPS administration. Survival animals were sacrificed, their kidney, liver and brain homogenized for malondialdehyde (MDA), catalase (CAT) activity, free iron and nitric oxide (NO) determination. Plasma was also processed for transaminases, creatinine, urea, NO and iron measurement. Pre-treatment with resveratrol greatly improved the survival rate of LPS-treated mice. Resveratrol counteracted LPS-induced tissue lipoperoxidation and catalase activity depletion. The polyphenol abrogated LPS-induced liver and kidney dysfunction as increased creatinine and urea as well as transaminases activities. In addition, pre-treatment with resveratrol abrogated LPS-induced tissues and plasma NO elevation and iron sequestration from plasma to tissue compartment. These data suggest that resveratrol prevents LPS-induced lethality and that its mode of action may involve differential iron deposition via iron shuttling proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-6915
1873-6351
DOI:10.1016/j.fct.2010.03.022