A Coupled-Simulation-and-Optimization Approach to Nanodevice Fabrication With Minimization of Electrical Characteristics Fluctuation

In this paper, a simulation-based optimization methodology for nanoscale complementary metal-oxide-semiconductor (CMOS) device fabrication is advanced. Fluctuation of electrical characteristics is simultaneously considered and minimized in the optimization procedure. Integration of device and proces...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on semiconductor manufacturing Vol. 20; no. 4; pp. 432 - 438
Main Authors Li, Yiming, Yu, Shao-Ming
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a simulation-based optimization methodology for nanoscale complementary metal-oxide-semiconductor (CMOS) device fabrication is advanced. Fluctuation of electrical characteristics is simultaneously considered and minimized in the optimization procedure. Integration of device and process simulation is implemented to evaluate device performances, where the hybrid intelligent approach enables us to extract optimal recipes which are subject to targeted device specification. Production of CMOS devices now enters the technology node of 65 nm; therefore, random-dopant-induced characteristic fluctuation should be minimized when a set of fabrication parameters is suggested. Verification of the optimization methodology is tested and performed for the 65-nm CMOS device. Compared with realistic fabricated and measured data, this approach can achieve the device characteristics; e.g., for the explored 65-nm n-type MOS field effect transistor, the on-state current > 0.35 mA/mum, the off-state current < 1.5e - 11 A/mum, and the threshold voltage = 0.43 V. Meanwhile, it reduces the threshold voltage fluctuation (sigma vth ~ 0.017 V). This approach provides an alternative to accelerate the tuning of process parameters and benefits manufacturing of nanoscale CMOS devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0894-6507
1558-2345
DOI:10.1109/TSM.2007.907623