Olmesartan medoxomil treatment potently improves cardiac myosin-induced dilated cardiomyopathy via the modulation of ACE-2 and ANG 1-7 mas receptor

Abstract Angiotensin converting enzyme-2 (ACE-2) is a monocarboxypeptidase that metabolises angiotensin (ANG)-II into angiotensin 1-7 (ANG 1-7), thereby functioning as a negative regulator of the renin-angiotensin system. We investigated whether treatment with ANG-II type 1 receptor blocker, olmesar...

Full description

Saved in:
Bibliographic Details
Published inFree radical research Vol. 46; no. 7; pp. 850 - 860
Main Authors Sukumaran, Vijayakumar, Veeraveedu, Punniyakoti T., Lakshmanan, Arun Prasath, Gurusamy, Narasimman, Yamaguchi, Ken'ichi, Ma, Meilei, Suzuki, Kenji, Kodama, Makoto, Watanabe, Kenichi
Format Journal Article
LanguageEnglish
Published England Informa Healthcare 01.07.2012
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Angiotensin converting enzyme-2 (ACE-2) is a monocarboxypeptidase that metabolises angiotensin (ANG)-II into angiotensin 1-7 (ANG 1-7), thereby functioning as a negative regulator of the renin-angiotensin system. We investigated whether treatment with ANG-II type 1 receptor blocker, olmesartan medoxomil is associated with the attenuation of cardiac myosin-induced dilated cardiomyopathy (DCM) through recently established new axis of ACE-2/ANG 1-7 mas receptor. DCM was elicited in Lewis rats by immunisation with cardiac myosin, and 28 days after immunisation, the surviving Lewis rats were divided into two groups and treated with either olmesartan medoxomil (10 mg/kg/day) or vehicle. Myocardial protein and mRNA levels of ACE-2, ANG 1-7 mas receptor were upregulated in the olmesartan-treated group compared with those of vehicle-treated DCM rats. In contrast, Olmesartan treatment effectively suppressed the myocardial protein and mRNA expressions of inflammatory markers in comparison to the vehicle-treated DCM rats. Olmesartan treatment significantly reduced fibrosis, hypertrophy and their marker molecules (OPN, CTGF, ANP and GATA-4, respectively), as well as matrix metalloproteinases compared with those of vehicle-treated DCM rats. Enhanced myocardial protein levels of phospho-p38 MAPK, phospho-JNK and phospho MAPKAPK-2 in the vehicle-treated DCM rats were prevented by olmesartan treatment. In addition, olmesartan treatment significantly lowered the protein expressions (Nitrotyrosine, p47phox and p67phox) and superoxide radical production compared with those of vehicle-treated DCM rats. Our present study might serve as a new therapeutic target of DCM in cardiovascular diseases and cardiac myosin-induced DCM via the modulation of ACE-2/ANG 1-7 mas receptor axis in rats with DCM after myosin-immunisation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1071-5762
1029-2470
1029-2470
DOI:10.3109/10715762.2012.684878