Parallel Optimization of Sparse Portfolios with AR-HMMs
In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein–Uhlenbeck (OU) process are estimated by auto-regressive Hidden Markov Models (AR-HMM), in order to capture the underlying characteristics of the financial time...
Saved in:
Published in | Computational economics Vol. 49; no. 4; pp. 563 - 578 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein–Uhlenbeck (OU) process are estimated by auto-regressive Hidden Markov Models (AR-HMM), in order to capture the underlying characteristics of the financial time series. Portfolio optimization is then performed by maximizing the return achieved with a predefined probability instead of optimizing the predictability parameter, which provides more profitable portfolios. The selection of the optimal portfolio according to the goal function is carried out by stochastic search algorithms. The presented solutions satisfy the cardinality constraint in terms of providing a sparse portfolios which minimize the transaction costs (and, as a result, maximize the interpretability of the results). In order to use the method for high frequency trading (HFT) we utilize a massively parallel GPGPU architecture. Both the portfolio optimization and the model identification algorithms are successfully tailored to be running on GPGPU to meet the challenges of efficient software implementation and fast execution time. The performance of the new method has been extensively tested both on historical daily and intraday FOREX data and on artificially generated data series. The results demonstrate that a good average return can be achieved by the proposed trading algorithm in realistic scenarios. The speed profiling has proven that GPGPU is capable of HFT, achieving high-throughput real-time performance. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0927-7099 1572-9974 |
DOI: | 10.1007/s10614-016-9579-y |