Effects of different pressures and laying lengths of micro-sprinkling hose irrigation on irrigation uniformity and yield of spring wheat

The experiment employed a commonly used micro-sprinkling hose (N50) to investigate the variation in water distribution uniformity during different growth stages of spring wheat, considering four operating pressures (28, 35, 43, and 52 kPa) and two laying lengths (20 m and 40 m). By analyzing the wat...

Full description

Saved in:
Bibliographic Details
Published inAgricultural water management Vol. 288; p. 108495
Main Authors Wang, Wenjuan, Xu, Ru, Wei, Rong, Wang, Wene, Hu, Xiaotao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The experiment employed a commonly used micro-sprinkling hose (N50) to investigate the variation in water distribution uniformity during different growth stages of spring wheat, considering four operating pressures (28, 35, 43, and 52 kPa) and two laying lengths (20 m and 40 m). By analyzing the water distribution uniformity of micro-sprinkling hose irrigation at varying plant heights of spring wheat, we have identified the pattern of N50′s water distribution uniformity under field conditions. The results demonstrated that both the water distribution uniformity and spatial distribution characteristics of micro-sprinkling hose irrigation are influenced by crop shading conditions. Changes in operating pressure lead to modifications in spraying angles, thereby affecting how crop shading impacts water distribution through micro-sprinkling hose. The influence of different wheat heights on the water distribution from micro-sprinkling hoses is clearly evident as there were fluctuations in intercepted sprayed water by the wheat canopy at vary heights. Notably, significant variations were observed among the head, center, and tail sections of micro-sprinkling hose at a plant height of 40 cm; however, alterations were relatively minimal at plant heights of 20 cm and 70 cm. Analysis of spring wheat’s plant height and grain yield variation curves indicates that uneven water distribution results in non-uniform crop growth. Based on our findings within the tested pressure range for two laying lengths, an optimal operating pressure range between 40 and 50 kPa was determined for ensuring uniform irrigation using micro-sprinkling hose. Determining the proper operating pressure and laying length is the key to achieving uniform irrigation. When designing the product, by choosing a relatively suitable arrangement of spray holes, the spraying angle during operation can be adapted to the plant height. This reduces the interception of water by crop shading, improves irrigation uniformity, and achieves water conservation and high yield. •The interception and effect of crop heights on water distribution was significant.•Laying length greatly impacts water distribution uniformity, leading to variations.•Un-uniform water distribution leads to uneven crop growth and grain yield.•The use of overlapping micro-sprinkling hoses significantly increased wheat yields.
ISSN:0378-3774
1873-2283
DOI:10.1016/j.agwat.2023.108495