Accuracy of a clinical PET/CT vs. a preclinical μPET system for monitoring treatment effects in tumour xenografts
Abstract Purpose Small animal imaging is of growing importance for preclinical research and drug development. Tumour xenografts implanted in mice can be visualized with a clinical PET/CT (cPET); however, it is unclear whether early treatment effects can be monitored. Thus, we investigated the accura...
Saved in:
Published in | European journal of radiology Vol. 82; no. 8; pp. 1318 - 1324 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract Purpose Small animal imaging is of growing importance for preclinical research and drug development. Tumour xenografts implanted in mice can be visualized with a clinical PET/CT (cPET); however, it is unclear whether early treatment effects can be monitored. Thus, we investigated the accuracy of a cPET versus a preclinical μPET using18 F-FDG for assessing early treatment effects. Materials and methods The spatial resolution and the quantitative accuracy of a clinical and preclinical PET were evaluated in phantom experiments. To investigate the sensitivity for assessing treatment response, A431 tumour xenografts were implanted in nude mice. Glucose metabolism was measured in untreated controls and in two therapy groups (either one or four days of antiangiogenic treatment). Data was validated by γ-counting of explanted tissues. Results In phantom experiments, cPET enabled reliable separation of boreholes ≥ 5 mm whereas μPET visualized boreholes ≥ 2 mm. In animal studies, μPET provided significantly higher tumour-to-muscle ratios for untreated control tumours than cPET (3.41 ± 0.87 vs. 1.60 ± .0.28, respectively; p < 0.01). During treatment, cPET detected significant therapy effects at day 4 ( p < 0.05) whereas μPET revealed highly significant therapy effects even at day one ( p < 0.01). Correspondingly, γ-counting of explanted tumours indicated significant therapy effects at day one and highly significant treatment response at day 4. Correlation with γ-counting was good for cPET ( r = 0.74; p < 0.01) and excellent for μPET ( r = 0.85; p < 0.01). Conclusion Clinical PET is suited to investigate tumour xenografts ≥ 5 mm at an advanced time-point of treatment. For imaging smaller tumours or for the sensitive assessment of very early therapy effects, μPET should be preferred. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0720-048X 1872-7727 |
DOI: | 10.1016/j.ejrad.2013.01.028 |