C-Terminal Region Truncation of RELN Disrupts an Interaction with VLDLR, Causing Abnormal Development of the Cerebral Cortex and Hippocampus

We discovered a hypomorphic reelin (Reln) mutant with abnormal cortical lamination and no cerebellar hypoplasia. This mutant, Reln , carries a chemically induced splice-site mutation that truncates the C-terminal region (CTR) domain of RELN protein and displays remarkably distinct phenotypes from re...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 37; no. 4; pp. 960 - 971
Main Authors Ha, Seungshin, Tripathi, Prem P, Mihalas, Anca B, Hevner, Robert F, Beier, David R
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 25.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We discovered a hypomorphic reelin (Reln) mutant with abnormal cortical lamination and no cerebellar hypoplasia. This mutant, Reln , carries a chemically induced splice-site mutation that truncates the C-terminal region (CTR) domain of RELN protein and displays remarkably distinct phenotypes from reeler The mutant does not have an inverted cortex, but cortical neurons overmigrate and invade the marginal zone, which are characteristics similar to a phenotype seen in the cerebral cortex of Vldlr mice. The dentate gyrus shows a novel phenotype: the infrapyramidal blade is absent, while the suprapyramidal blade is present and laminated. Genetic epistasis analysis showed that Reln /Apoer2 double homozygotes have phenotypes akin to those of reeler mutants, while Reln /Vldlr mice do not. Given that the receptor double knock-out mice resemble reeler mutants, we infer that Reln /Apoer2 double homozygotes have both receptor pathways disrupted. This suggests that CTR-truncation disrupts an interaction with VLDLR (very low-density lipoprotein receptor), while the APOER2 signaling pathway remains active, which accounts for the hypomorphic phenotype in Reln mice. A RELN-binding assay confirms that CTR truncation significantly decreases RELN binding to VLDLR, but not to APOER2. Together, the in vitro and in vivo results demonstrate that the CTR domain confers receptor-binding specificity of RELN. Reelin signaling is important for brain development and is associated with human type II lissencephaly. Reln mutations in mice and humans are usually associated with cerebellar hypoplasia. A new Reln mutant with a truncation of the C-terminal region (CTR) domain shows that Reln mutation can cause abnormal phenotypes in the cortex and hippocampus without cerebellar hypoplasia. Genetic analysis suggested that CTR truncation disrupts an interaction with the RELN receptor VLDLR (very low-density lipoprotein receptor); this was confirmed by a RELN-binding assay. This result provides a mechanistic explanation for the hypomorphic phenotype of the CTR-deletion mutant, and further suggests that Reln mutations may cause more subtle forms of human brain malformation than classic lissencephalies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: S.H. and D.R.B. designed research; S.H., P.P.T., and A.B.M. performed research; S.H., P.P.T., A.B.M., R.F.H., and D.R.B. analyzed data; S.H., R.F.H., and D.R.B. wrote the paper.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1826-16.2016