Polymorphism in glutathione S-transferase P1 is associated with susceptibility to Plasmodium vivax malaria compared to P. falciparum and upregulates the GST level during malarial infection

Glutathione S-transferase P1 (GSTP1) is a member of the GST superfamily, which has well-established multiple roles in various infectious and parasitic diseases. The genetic regulation of GSTP1 has been extensively studied. Thus, its biological significance and disease association prompted us to inve...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 49; no. 11; pp. 1746 - 1754
Main Authors Sohail, Mohammad, Kumar, Ritesh, Kaul, Asha, Arif, Ehtesham, Kumar, Sanjit, Adak, Tridibes
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glutathione S-transferase P1 (GSTP1) is a member of the GST superfamily, which has well-established multiple roles in various infectious and parasitic diseases. The genetic regulation of GSTP1 has been extensively studied. Thus, its biological significance and disease association prompted us to investigate the role of GSTP1 polymorphisms in Plasmodium-mediated pathogenesis in infected humans. The genotypic distribution of Ile105Val in Plasmodium vivax infection was observed to be significant and strongly associated (OR = 4.5) with the progression of pathology, whereas in P. falciparum infection no significant association was observed compared to healthy subjects. Interestingly, we observed significant elevation of GST in vivax infection, with both genotypes Ile105Val and Val105Val, compared to healthy subjects, whereas in P. falciparum infection we found marginally elevated GST levels of mutated genotypes but significantly depleted compared to healthy subjects. Further, during vivax and falciparum infection overall significant elevations of glutathione, glutathione peroxidase, and GST levels were observed. Expression of both GSTP1 mRNA and protein was significantly upregulated during vivax infection compared to falciparum infection and both were significantly upregulated compared to the levels in healthy subjects as well. These studies suggest that GSTP1 polymorphism is involved in the pathogenesis of malaria and it may serve as a valuable molecular marker, possessing a promising rationale for diagnostic potential in assessing disease progression during clinical malaria.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0891-5849
1873-4596
1873-4596
DOI:10.1016/j.freeradbiomed.2010.09.004