Plant functional type affects nitrogen dynamics in urban park soils similarly to boreal forest soils

Purpose Although plant functional type can modulate soils and their processes in natural, nitrogen (N)-limited ecosystems, little is known about their ability to influence soil N dynamics in urban ecosystems that have high excess N input. We investigated whether i) plant functional type effects on s...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 479; no. 1-2; pp. 573 - 587
Main Authors Lu, Changyi, Kotze, D. Johan, Setälä, Heikki M.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose Although plant functional type can modulate soils and their processes in natural, nitrogen (N)-limited ecosystems, little is known about their ability to influence soil N dynamics in urban ecosystems that have high excess N input. We investigated whether i) plant functional type effects on soil N dynamics in urban parks follow the same pattern as those in undisturbed natural/semi-natural forests, and ii) park age influences plant functional type effects on soil N dynamics under boreal climate. Methods We selected 13 urban parks of varying ages (young: 10 to 15, old: > 70 years), and 5 undisturbed natural/semi-natural forests (> 80 years) in southern Finland. In these parks and forests, we measured soil total N concentration, availability of inorganic N, nitrous oxide (N 2 O) flux and earthworm biomass under three plant functional types (evergreen tree, deciduous tree, lawn). Results Our results showed that plant functional type influenced N dynamics also in urban greenspace soils, which may relate to the clear effect of plant functional type on earthworm biomass. Evergreen trees tended to have the highest ability to foster N accumulation and reduce N 2 O emissions in urban parks. Moreover, with increasing park age, N accumulation increased under trees but decreased under lawns, further emphasising the role of vegetation in affecting soil N dynamics in urban greenspaces. Conclusions Our results show that, similar to natural/semi-natural forests, plant functional type, irrespective of park age, can influence soil N dynamics in urban parks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0032-079X
1573-5036
DOI:10.1007/s11104-022-05544-9