Multi-Additivity in Kaniadakis Entropy
It is known that Kaniadakis entropy, a generalization of the Shannon-Boltzmann-Gibbs entropic form, is always super-additive for any bipartite statistically independent distributions. In this paper, we show that when imposing a suitable constraint, there exist classes of maximal entropy distribution...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 26; no. 1; p. 77 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It is known that Kaniadakis entropy, a generalization of the Shannon-Boltzmann-Gibbs entropic form, is always super-additive for any bipartite statistically independent distributions. In this paper, we show that when imposing a suitable constraint, there exist classes of maximal entropy distributions labeled by a positive real number ℵ>0 that makes Kaniadakis entropy multi-additive, i.e., Sκ[pA∪B]=(1+ℵ)Sκ[pA]+Sκ[pB], under the composition of two statistically independent and identically distributed distributions pA∪B(x,y)=pA(x)pB(y), with reduced distributions pA(x) and pB(y) belonging to the same class. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e26010077 |