Multi-Additivity in Kaniadakis Entropy

It is known that Kaniadakis entropy, a generalization of the Shannon-Boltzmann-Gibbs entropic form, is always super-additive for any bipartite statistically independent distributions. In this paper, we show that when imposing a suitable constraint, there exist classes of maximal entropy distribution...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 26; no. 1; p. 77
Main Authors Scarfone, Antonio M, Wada, Tatsuaki
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is known that Kaniadakis entropy, a generalization of the Shannon-Boltzmann-Gibbs entropic form, is always super-additive for any bipartite statistically independent distributions. In this paper, we show that when imposing a suitable constraint, there exist classes of maximal entropy distributions labeled by a positive real number ℵ>0 that makes Kaniadakis entropy multi-additive, i.e., Sκ[pA∪B]=(1+ℵ)Sκ[pA]+Sκ[pB], under the composition of two statistically independent and identically distributed distributions pA∪B(x,y)=pA(x)pB(y), with reduced distributions pA(x) and pB(y) belonging to the same class.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e26010077