The last two transmembrane helices in the APC-type FurE transporter act as an intramolecular chaperone essential for concentrative ER-exit

FurE is a H symporter specific for the cellular uptake of uric acid, allantoin, uracil, and toxic nucleobase analogues in the fungus nidulans. Being member of the NCS1 protein family, FurE is structurally related to the APC-superfamily of transporters. APC-type transporters are characterised by a 5+...

Full description

Saved in:
Bibliographic Details
Published inMicrobial cell Vol. 11; pp. 1 - 15
Main Authors Pyrris, Yiannis, Papadaki, Georgia F, Mikros, Emmanuel, Diallinas, George
Format Journal Article
LanguageEnglish
Published Austria Shared Science Publishers OG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:FurE is a H symporter specific for the cellular uptake of uric acid, allantoin, uracil, and toxic nucleobase analogues in the fungus nidulans. Being member of the NCS1 protein family, FurE is structurally related to the APC-superfamily of transporters. APC-type transporters are characterised by a 5+5 inverted repeat fold made of ten transmembrane segments (TMS1-10) and function through the rocking-bundle mechanism. Most APC-type transporters possess two extra C-terminal TMS segments (TMS11-12), the function of which remains elusive. Here we present a systematic mutational analysis of TMS11-12 of FurE and show that two specific aromatic residues in TMS12, Trp473 and Tyr484, are essential for ER-exit and trafficking to the plasma membrane (PM). Molecular modeling shows that Trp473 and Tyr484 might be essential through dynamic interactions with residues in TMS2 (Leu91), TMS3 (Phe111), TMS10 (Val404, Asp406) and other aromatic residues in TMS12. Genetic analysis confirms the essential role of Phe111, Asp406 and TMS12 aromatic residues in FurE ER-exit. We further show that co-expression of FurE-Y484F or FurE-W473A with wild-type FurE leads to a dominant negative phenotype, compatible with the concept that FurE molecules oligomerize or partition in specific microdomains to achieve concentrative ER-exit and traffic to the PM. Importantly, truncated FurE versions lacking TMS11-12 are unable to reproduce a negative effect on the trafficking of co-expressed wild-type FurE. Overall, we show that TMS11-12 acts as an intramolecular chaperone for proper FurE folding, which seems to provide a structural code for FurE partitioning in ER-exit sites.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conflict of Interest: The authors declare no conflict of interest.
Please cite this article as: Yiannis Pyrris, Georgia F. Papadaki, Emmanuel Mikros and George Diallinas (2024). The last two transmembrane helices in the APC-type FurE transporter act as an intramolecular chaperone essential for concentrative ER-exit. Microbial Cell 11: 1-15. doi: 10.15698/mic2024.01.811
ISSN:2311-2638
2311-2638
DOI:10.15698/mic2024.01.811