Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane
In this paper, nanofibrous membranes based on poly(vinylidene fluoride) (PVdF) doped with ion-complex (SiO2-PAALi) were prepared by electrospinning technique and the corresponding composite gel-polymer electrolytes (CGPEs) were obtained after being activated in liquid electrolyte. The microstructure...
Saved in:
Published in | Electrochimica acta Vol. 151; pp. 289 - 296 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, nanofibrous membranes based on poly(vinylidene fluoride) (PVdF) doped with ion-complex (SiO2-PAALi) were prepared by electrospinning technique and the corresponding composite gel-polymer electrolytes (CGPEs) were obtained after being activated in liquid electrolyte. The microstructure, physical and electrochemical performances of the nanofibrous membranes and the corresponding CGPEs were studied by various measurements such as Fourier Transform Infrared Spectroscopy(FTIR), Scanning Electron Microscope (SEM), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Stress-strain test, Linear Sweep Voltammetry (LSV), AC impedance measurement and Charge/discharge cycle test. As to the ion-complex doped nanofibrous membranes, PVdF can provide mechanical support with network structure composed of fully interconnection; while the ion-complexes are absorbed onto the surface of the PVdF nanofibers evenly instead of being aggregated. With the help of doped ion-complex, the prepared nanofibrous membranes present good liquid electrolyte absorbability, excellent mechanical performance, and high decomposition temperature. For the corresponding CGPEs, they possess high ionic conductivity, wide electrochemical window, and good charge/discharge cycle performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2014.11.083 |