Exploring the Antioxidant Effects and Periodic Regulation of Cancer Cells by Polyphenols Produced by the Fermentation of Grape Skin by Lactobacillus plantarum KFY02

KFY02 (LP-KFY02) was isolated from naturally fermented yoghurt in Xinjiang. We previously demonstrated that LP-KFY02 has good biological activity in vitro. In this study, LP-KFY02 was used to ferment grape skin, and the LP-KFY02 fermented grape skin extract solution (KFSE) was examined for its antio...

Full description

Saved in:
Bibliographic Details
Published inBiomolecules (Basel, Switzerland) Vol. 9; no. 10; p. 575
Main Authors Liu, Jia, Tan, Fang, Liu, Xinhong, Yi, Ruokun, Zhao, Xin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 06.10.2019
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:KFY02 (LP-KFY02) was isolated from naturally fermented yoghurt in Xinjiang. We previously demonstrated that LP-KFY02 has good biological activity in vitro. In this study, LP-KFY02 was used to ferment grape skin, and the LP-KFY02 fermented grape skin extract solution (KFSE) was examined for its antioxidant ability in a human embryonic kidney (293T) cell oxidative damage model caused by H O and its inhibitory effect on human hepatoma (HepG2) cells. The results showed that KFSE reduced the degree of oxidative damage in 293T cells, increased the relevant expression levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and GSH-peroxidase (GSH-Px), and total antioxidant capacity (T-AOC), and decreased the expression levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), and nitric oxide (NO). The expression of genes and proteins of SOD, CAT, GSH, and GSH-Px was up-regulated. In addition, KFSE-induced growth inhibition appeared to be through induction of cell-cycle arrest. This induction was accompanied by a reduction in the expression of cell-cycle genes, such as and . In addition, KFSE induced gene expression of , the apoptosis gene wild-type and the caspase family. At the protein expression level, Bax and Caspase-8 were up-regulated, and the inflammatory marker Nuclear Factor Kappa-B (NF-κB) was down-regulated. The fermentation solution polyphenols were separated and identified as epicatechin gallate, coumarin, new chlorogenic acid, rutin, resveratrol, chlorogenic acid, rosmarinic acid, etc. by HPLC. Overall, these results demonstrate that KFSE significantly attenuated oxidative damage in 293T cells and inhibited tumor growth in HepG2 cancer cells, induces cell-cycle arrest and affects proteins involved in cell-cycle regulation and proliferation. This suggests that KFSE may also be explored as a neo-adjuvant to expansion of hepatoma.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom9100575