Highlight on Supernova Early Warning at Daya Bay

Providing an early warning of supernova burst neutrinos is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay Reactor Neutrino Experiment, with a unique feature of multiple liquid scintillator detectors, is sensitive to the full energy spectrum of supernova burst el...

Full description

Saved in:
Bibliographic Details
Published inPhysics procedia Vol. 61; pp. 802 - 806
Main Author Wei, Hanyu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Providing an early warning of supernova burst neutrinos is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay Reactor Neutrino Experiment, with a unique feature of multiple liquid scintillator detectors, is sensitive to the full energy spectrum of supernova burst electron-antineutrinos. By utilizing 8 Antineutrino Detectors (ADs) in the three different experimental halls which are about 1 km's apart from each other, we obtain a powerful and prompt rejection of muon spallation background than single-detector experiments with the same target volume. A dedicated trigger system embedded in the data acquisition system has been installed to allow the detection of a coincidence of neutrino signals of all ADs via an inverse beta-decay (IBD) within a 10-second window, thus providing a robust early warning of a supernova occurrence within the Milky Way. An 8-AD associated supernova trigger table has been established theoretically to tabulate the 8-AD event counts’ coincidence vs. the trigger rate. As a result, a golden trigger threshold, i.e. with a false alarm rate < 1/3-months, can be set as low as 6 candidates among the 8 detectors, leading to a 100% detection probability for all 1987A type supernova bursts at the distance to the Milky Way center and a 96% detection probability to those at the edge of the Milky Way.
ISSN:1875-3892
1875-3892
DOI:10.1016/j.phpro.2014.12.103