A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China

Maize yield is limited by water deficit in the arid and semiarid regions of China. Conserving water and enhancing crop water productivity are inevitable requirements for the sustainable development of water efficient agriculture. Plant growth regulators (PGRs) play important roles in maize water str...

Full description

Saved in:
Bibliographic Details
Published inAgricultural water management Vol. 287; p. 108441
Main Authors He, Rui, He, Min, Xu, Haidong, Zhang, Kun, Zhang, Mingcai, Ren, Dan, Li, Zhaohu, Zhou, Yuyi, Duan, Liusheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Maize yield is limited by water deficit in the arid and semiarid regions of China. Conserving water and enhancing crop water productivity are inevitable requirements for the sustainable development of water efficient agriculture. Plant growth regulators (PGRs) play important roles in maize water stress tolerance. In this study, we investigated the effect of plant growth regulator-brazide, a functional analog of brassinolide (BR), on maize water stress resistance through a two-year (2020–2021) field experiment. The experiment included four water treatments (I100: 4012 m3 ha−1; I80: 3210 m3 ha−1; I60: 2407 m3 ha−1; I40: 1605 m3 ha−1), four PGR concentrations (CK: water; Bra: 0.1 μmol L−1 14-hydroxylated brassinosteroid; B1: 0.1 μmol L−1 brazide; B2: 1 μmol L−1 brazide; B3: 10 μmol L−1 brazide). The results showed that deficit irrigation (I60 and I40) decreased soil water content (SWC), photosynthetic rate (Pn), leaf area index (LAI), aboveground biomass (AB) and yield, but improved crop water productivity (WPc). Under deficit irrigation conditions, 1 μmol L−1 brazide application also increased dry matter accumulation and grain yield, a result attributed to improvement of the photosynthetic rate and increases in the root bleeding saps, water productivity. 1 μmol L−1 Brazide application reduced bare tip length, increasing kernel number per ear, thereby increased the yield of I60 and I40 by 15.1% and 11.4% (p ≤ 0.05; 2020), 16.4% and 20.4% (p ≤ 0.001; 2021), respectively. Path analysis showed brazide improved final yields by increasing thousand grain weight (TGW), photosynthetic rate (Pn) and WPc under deficit irrigation. The increase in TGW with brazide treatment was primarily attributed to the increase of Pn. Overall, Brazide increased maize drought resistance mainly by increasing Pn and WPc, with 1 μmol L−1 brazide as an optimal concentration. •A new plant growth regulator, Brazide, was evaluated in maize.•Brazide increased photosynthetic rate and WUE under deficit irrigation.•Application of brazide improved maize growth and grain yield under deficit irrigation.•1 μmol L−1 brazide as an optimal concentration for maize in arid region of Northwest China.
ISSN:0378-3774
1873-2283
DOI:10.1016/j.agwat.2023.108441