Asymptotic Dynamics of High Dynamic Range Stratified Turbulence

Direct numerical simulations of homogeneous sheared and stably stratified turbulence are considered to probe the asymptotic high dynamic range regime suggested by Gargett et al. J. Fluid Mech. 144, 231 (1984)10.1017/S0022112084001592 and Shih et al. J. Fluid Mech. 525, 193 (1999)10.1017/S00221120040...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 122; no. 19; p. 194504
Main Authors Portwood, G D, de Bruyn Kops, S M, Caulfield, C P
Format Journal Article
LanguageEnglish
Published United States 17.05.2019
Online AccessGet more information

Cover

Loading…
More Information
Summary:Direct numerical simulations of homogeneous sheared and stably stratified turbulence are considered to probe the asymptotic high dynamic range regime suggested by Gargett et al. J. Fluid Mech. 144, 231 (1984)10.1017/S0022112084001592 and Shih et al. J. Fluid Mech. 525, 193 (1999)10.1017/S0022112004002587. We consider statistically stationary configurations of the flow that span three decades in dynamic range defined by the separation between the Ozmidov length scale L_{O}=sqrt[ε/N^{3}] and the Kolmogorov length scale L_{K}=(ν^{3}/ε)^{1/4}, up to Re_{b}≡(L_{O}/L_{K})^{4/3}=ε/(νN^{2})∼O(1000), where ε is the mean turbulent kinetic energy dissipation rate, ν is the kinematic viscosity, and N is the buoyancy frequency. We isolate the effects of Re_{b}, particularly on irreversible mixing, from the effects of other flow parameters of stratified and sheared turbulence. Specifically, we evaluate the influence of dynamic range independent of initial conditions. We present evidence that the flow approaches an asymptotic state for Re_{b}⪆300, characterized both by an asymptotic partitioning between the potential and kinetic energies and by the approach of components of the dissipation rate to their expected values under the assumption of isotropy. As Re_{b} increases above 100, there is a slight decrease in the turbulent flux coefficient Γ=χ/ε, where χ is the dissipation rate of buoyancy variance, but, for this flow, there is no evidence of the commonly suggested Γ∝Re_{b}^{-1/2} dependence when 100≤Re_{b}≤1000.
ISSN:1079-7114
DOI:10.1103/PhysRevLett.122.194504