Exosomes from Human Placenta Choriodecidual Membrane-Derived Mesenchymal Stem Cells Mitigate Endoplasmic Reticulum Stress, Inflammation, and Lung Injury in Lipopolysaccharide-Treated Obese Mice
Endoplasmic reticulum (ER) stress mediates the effects of obesity on aggravating sepsis-induced lung injury. We investigated whether exosomes from human placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs) can mitigate pulmonary ER stress, lung injury, and the mechanisms of infla...
Saved in:
Published in | Antioxidants Vol. 11; no. 4; p. 615 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Endoplasmic reticulum (ER) stress mediates the effects of obesity on aggravating sepsis-induced lung injury. We investigated whether exosomes from human placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs) can mitigate pulmonary ER stress, lung injury, and the mechanisms of inflammation, oxidation, and apoptosis in lipopolysaccharide-treated obese mice. Diet-induced obese (DIO) mice (adult male C57BL/6J mice fed with a 12-week high-fat diet) received lipopolysaccharide (10 mg/kg, i.p.; DIOLPS group) or lipopolysaccharide plus exosomes (1 × 108 particles/mouse, i.p.; DIOLPSExo group). Our data demonstrated lower levels of ER stress (upregulation of glucose-regulated protein 78, phosphorylated eukaryotic initiation factor 2α, and C/EBP homologous protein; p = 0.038, <0.001, and <0.001, respectively), inflammation (activation of nuclear factor-kB, hypoxia-inducible factor-1α, macrophages, and NLR family pyrin domain containing 3; upregulation of tumor necrosis factor-α, interleukin-1β, and interleukin-6; p = 0.03, <0.001, <0.001, <0.001, <0.001, <0.001, and <0.001, respectively), lipid peroxidation (p < 0.001), and apoptosis (DNA fragmentation, p = 0.003) in lung tissues, as well as lower lung injury level (decreases in tidal volume, peak inspiratory flow, and end expiratory volume; increases in resistance, injury score, and tissue water content; p < 0.001, <0.001, <0.001, <0.001, <0.001, and =0.002, respectively) in the DIOLPSExo group than in the DIOLPS group. In conclusion, exosomes from human pcMSCs mitigate pulmonary ER stress, inflammation, oxidation, apoptosis, and lung injury in lipopolysaccharide-treated obese mice. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 2076-3921 2076-3921 |
DOI: | 10.3390/antiox11040615 |