Non-normal Data in Repeated Measures ANOVA: Impact on Type I Error and Power
Repeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical analyses, the F-statistic of repeated measures analysis of variance (RM-ANOVA) remains the most widely used procedure for analyzing differences in means. The impac...
Saved in:
Published in | Psicothema Vol. 1; no. 35; pp. 21 - 29 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Spain
Colegio Oficial de Psicólogos (PSICODOC)
01.01.2023
Colegio Oficial de Psicólogos del Principado de Asturias |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Repeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical analyses, the F-statistic of repeated measures analysis of variance (RM-ANOVA) remains the most widely used procedure for analyzing differences in means. The impact of the violation of normality has been extensively studied for between-subjects ANOVA, but this is not the case for RM-ANOVA. Therefore, studies that extensively and systematically analyze the robustness of RM-ANOVA under the violation of normality are needed. This paper reports the results of two simulation studies aimed at analyzing the Type I error and power of RM-ANOVA when the normality assumption is violated but sphericity is fulfilled.
Study 1 considered 20 distributions, both known and unknown, and we manipulated the number of repeated measures (3, 4, 6, and 8) and sample size (from 10 to 300). Study 2 involved unequal distributions in each repeated measure. The distributions analyzed represent slight, moderate, and severe deviation from normality.
Overall, the results show that the Type I error and power of the F-statistic are not altered by the violation of normality.
RM-ANOVA is generally robust to non-normality when the sphericity assumption is met. |
---|---|
AbstractList | Background:Repeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical analyses, the F-statistic of repeated measures analysis of variance (RM-ANOVA) remains the most widely used procedure for analyzing differences in means. The impact of the violation of normality has been extensively studied for between-subjects ANOVA, but this is not the case for RM-ANOVA. Therefore, studies that extensively and systematically analyze the robustness of RM-ANOVA under the violation of normality are needed. This paper reports the results of two simulation studies aimed at analyzing the Type I error and power of RM-ANOVA when the normality assumption is violated but sphericity is fulfilled. Method:Study 1 considered 20 distributions, both known and unknown, and we manipulated the number of repeated measures (3, 4, 6, and 8) and sample size (from 10 to 300). Study 2 involved unequal distributions in each repeated measure. The distributions analyzed represent slight, moderate, and severe deviation from normality. Results:Overall, the results show that the Type I error and power of the F-statistic are not altered by the violation of normality. Conclusions:RM-ANOVA is generally robust to non-normality when the sphericity assumption is met. Repeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical analyses, the F-statistic of repeated measures analysis of variance (RM-ANOVA) remains the most widely used procedure for analyzing differences in means. The impact of the violation of normality has been extensively studied for between-subjects ANOVA, but this is not the case for RM-ANOVA. Therefore, studies that extensively and systematically analyze the robustness of RM-ANOVA under the violation of normality are needed. This paper reports the results of two simulation studies aimed at analyzing the Type I error and power of RM-ANOVA when the normality assumption is violated but sphericity is fulfilled. Study 1 considered 20 distributions, both known and unknown, and we manipulated the number of repeated measures (3, 4, 6, and 8) and sample size (from 10 to 300). Study 2 involved unequal distributions in each repeated measure. The distributions analyzed represent slight, moderate, and severe deviation from normality. Overall, the results show that the Type I error and power of the F-statistic are not altered by the violation of normality. RM-ANOVA is generally robust to non-normality when the sphericity assumption is met. Repeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical analyses, the F-statistic of repeated measures analysis of variance (RM-ANOVA) remains the most widely used procedure for analyzing differences in means. The impact of the violation of normality has been extensively studied for between-subjects ANOVA, but this is not the case for RM-ANOVA. Therefore, studies that extensively and systematically analyze the robustness of RM-ANOVA under the violation of normality are needed. This paper reports the results of two simulation studies aimed at analyzing the Type I error and power of RM-ANOVA when the normality assumption is violated but sphericity is fulfilled.BACKGROUNDRepeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical analyses, the F-statistic of repeated measures analysis of variance (RM-ANOVA) remains the most widely used procedure for analyzing differences in means. The impact of the violation of normality has been extensively studied for between-subjects ANOVA, but this is not the case for RM-ANOVA. Therefore, studies that extensively and systematically analyze the robustness of RM-ANOVA under the violation of normality are needed. This paper reports the results of two simulation studies aimed at analyzing the Type I error and power of RM-ANOVA when the normality assumption is violated but sphericity is fulfilled.Study 1 considered 20 distributions, both known and unknown, and we manipulated the number of repeated measures (3, 4, 6, and 8) and sample size (from 10 to 300). Study 2 involved unequal distributions in each repeated measure. The distributions analyzed represent slight, moderate, and severe deviation from normality.METHODStudy 1 considered 20 distributions, both known and unknown, and we manipulated the number of repeated measures (3, 4, 6, and 8) and sample size (from 10 to 300). Study 2 involved unequal distributions in each repeated measure. The distributions analyzed represent slight, moderate, and severe deviation from normality.Overall, the results show that the Type I error and power of the F-statistic are not altered by the violation of normality.RESULTSOverall, the results show that the Type I error and power of the F-statistic are not altered by the violation of normality.RM-ANOVA is generally robust to non-normality when the sphericity assumption is met.CONCLUSIONSRM-ANOVA is generally robust to non-normality when the sphericity assumption is met. Abstract Background: Repeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical analyses, theF-statistic of repeated measures analysis of variance (RM-ANOVA) remains the most widely used procedure for analyzing differences in means. The impact of the violation of normality has been extensively studied for between-subjects ANOVA, but this is not the case for RM-ANOVA. Therefore, studies that extensively and systematically analyze the robustness of RM-ANOVA under the violation of normality are needed. This paper reports the results of two simulation studies aimed at analyzing the Type I error and power of RM-ANOVA when the normality assumption is violated but sphericity is fulfilled. Method: Study 1 considered 20 distributions, both known and unknown, and we manipulated the number of repeated measures (3, 4, 6, and 8) and sample size (from 10 to 300). Study 2 involved unequal distributions in each repeated measure. The distributions analyzed represent slight, moderate, and severe deviation from normality. Results: Overall, the results show that the Type I error and power of theF-statistic are not altered by the violation of normality. Conclusions: RM-ANOVA is generally robust to non-normality when the sphericity assumption is met. |
Author | Alarcón, Rafael Blanca, María García-Castro, F. Bono, Roser Arnau, Jaume |
AuthorAffiliation | Universitat de Barcelona Universidad de Málaga |
AuthorAffiliation_xml | – name: Universidad de Málaga – name: Universitat de Barcelona |
Author_xml | – sequence: 1 givenname: María surname: Blanca fullname: Blanca, María – sequence: 2 givenname: Jaume surname: Arnau fullname: Arnau, Jaume – sequence: 3 givenname: F. surname: García-Castro fullname: García-Castro, F. – sequence: 4 givenname: Rafael surname: Alarcón fullname: Alarcón, Rafael – sequence: 5 givenname: Roser surname: Bono fullname: Bono, Roser |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36695847$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9rFDEUxYNU7Lb6BXyQgC--zJp_O5n4ttTWLmxb0Sq-hUzmBqfMJGOSQfrtm3Xbgn3oQ7gQfudc7jlH6MAHDwi9pWQpORcfp9TbkH_DaBhhbMkUe4EWtGnqigrx6wAtCKOiUoquDtFRSjeErGou2St0yOtarRohF2h7GXzlQxzNgD-bbHDv8TeYwGTo8AWYNEdIeH159XP9CW_GydiMg8fXtxPgDT6NMURsfIe_hr8QX6OXzgwJ3tzPY_Tj7PT65LzaXn3ZnKy3lRVU5IqvWNfKulVSiEYYLrtWgaPgOgfUdcrVQAyjpOmIoq1rXWMlp84qAAvlnx-j5d432R6GoG_CHH1ZqL_vrte760sinBBCyyO8CD7sBVMMf2ZIWY99sjAMxkOYk2ay5KFoLWVB3z9BH92ZlJIIIv5R7-6puR2h01PsRxNv9UOwBWj2gI0hpQhO2z6b3Aefo-kHTYnedaj_71CXDouUPZE-uD8jugO-F56Q |
CitedBy_id | crossref_primary_10_1007_s10460_024_10573_4 crossref_primary_10_1093_scan_nsae057 crossref_primary_10_1515_auto_2024_0031 crossref_primary_10_3389_fpsyg_2023_1260396 crossref_primary_10_3389_fmars_2024_1343415 crossref_primary_10_3390_bs15020166 crossref_primary_10_3389_fphys_2025_1537345 crossref_primary_10_3390_s24103080 crossref_primary_10_3389_fpsyg_2023_1192453 crossref_primary_10_7189_jogh_15_04006 crossref_primary_10_1016_j_rcim_2024_102886 crossref_primary_10_1016_j_neuroscience_2024_09_006 crossref_primary_10_1007_s10649_024_10323_7 crossref_primary_10_3389_fpain_2025_1556429 crossref_primary_10_1186_s40359_023_01464_0 crossref_primary_10_1111_jsr_14452 crossref_primary_10_1111_cdev_14163 crossref_primary_10_1007_s11618_024_01284_x crossref_primary_10_1016_j_autcon_2024_105876 crossref_primary_10_1093_scan_nsae048 crossref_primary_10_1016_j_jecp_2024_105934 crossref_primary_10_1007_s00221_024_06865_0 crossref_primary_10_1016_j_pedn_2024_10_004 crossref_primary_10_3389_fpsyg_2024_1375029 crossref_primary_10_1088_1361_6560_ad953f crossref_primary_10_1080_2331186X_2024_2422272 crossref_primary_10_1121_10_0036147 crossref_primary_10_1016_j_heliyon_2023_e17877 crossref_primary_10_3389_fpsyt_2024_1380620 crossref_primary_10_1016_j_heliyon_2025_e42128 crossref_primary_10_12973_ejper_8_1_35 crossref_primary_10_3390_brainsci14100972 crossref_primary_10_1016_j_freeradbiomed_2024_10_282 crossref_primary_10_1016_j_pmn_2024_08_009 crossref_primary_10_3389_fnut_2023_1303805 crossref_primary_10_3389_fnint_2024_1379208 crossref_primary_10_1080_15325024_2024_2402393 crossref_primary_10_3389_frvir_2024_1445725 crossref_primary_10_1016_j_ergon_2024_103650 crossref_primary_10_1002_mp_17494 crossref_primary_10_1098_rsos_240616 crossref_primary_10_1007_s12144_023_05326_1 crossref_primary_10_1007_s10763_023_10429_z crossref_primary_10_1016_j_cogdev_2024_101451 crossref_primary_10_1080_10790268_2024_2361552 crossref_primary_10_1111_acer_15255 crossref_primary_10_1007_s10578_024_01739_6 crossref_primary_10_1016_j_ins_2024_120830 crossref_primary_10_3390_bs14121137 crossref_primary_10_3389_fonc_2024_1472551 |
ContentType | Journal Article |
Copyright | 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.psicothema.com/PublicationNorms2022.pdf This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. |
Copyright_xml | – notice: 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.psicothema.com/PublicationNorms2022.pdf – notice: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88G 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH M2M M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 GPN |
DOI | 10.7334/psicothema2022.292 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Psychology Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Psychology Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic SciELO |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Psychology Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Health Research Premium Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
DocumentTitleAlternate | Datos no normales en el ANOVA de medidas repetidas: impacto en el error tipo I y potencia |
EISSN | 1886-144X |
EndPage | 29 |
ExternalDocumentID | S1886_144X2023000100003 36695847 10_7334_psicothema2022_292 |
Genre | Journal Article |
GroupedDBID | --- 29P 5VS 635 8FI 8FJ 8G5 AAFWJ AAYXX ABDBF ABIVO ABUWG ACHQT ACUHS ADBBV ADMHG AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC B14 BAWUL BCNDV BENPR CCPQU CITATION DIK DU5 DWQXO EBD EFA EMOBN ESX F5P FAEIB FYUFA GNUQQ GROUPED_DOAJ GUQSH HEY IAO IHR INF INH INR IPY ITC KQ8 M2M M2O N95 OK1 PHGZM PHGZT PIMPY PSYQQ RNS SV3 UKHRP ~8M ~OR 123 ALSLI CGR CJNVE CUY CVF ECM EIF M0P M~E NPM OVD RDY TEORI XI7 3V. 7XB 8FK AFPKN MBDVC PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 GPN |
ID | FETCH-LOGICAL-c414t-352db76b974484a37db9ef1efdfe1fd9f6e0a2108d091bfbf8c731fc9eece2103 |
IEDL.DBID | BENPR |
ISSN | 0214-9915 1886-144X |
IngestDate | Tue Aug 19 14:14:38 EDT 2025 Thu Jul 10 23:44:36 EDT 2025 Fri Jul 25 07:58:41 EDT 2025 Thu Jan 02 22:54:53 EST 2025 Thu Apr 24 23:00:12 EDT 2025 Tue Jul 01 03:41:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | potencia diseño intrasujeto ANOVA robustness violation of normality within-subject design power robustez violación de la normalidad |
Language | English |
License | This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-352db76b974484a37db9ef1efdfe1fd9f6e0a2108d091bfbf8c731fc9eece2103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2777040477?pq-origsite=%requestingapplication% |
PMID | 36695847 |
PQID | 2777040477 |
PQPubID | 6385226 |
PageCount | 9 |
ParticipantIDs | scielo_journals_S1886_144X2023000100003 proquest_miscellaneous_2769591677 proquest_journals_2777040477 pubmed_primary_36695847 crossref_citationtrail_10_7334_psicothema2022_292 crossref_primary_10_7334_psicothema2022_292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Spain |
PublicationPlace_xml | – name: Spain – name: Oviedo |
PublicationTitle | Psicothema |
PublicationTitleAlternate | Psicothema |
PublicationYear | 2023 |
Publisher | Colegio Oficial de Psicólogos (PSICODOC) Colegio Oficial de Psicólogos del Principado de Asturias |
Publisher_xml | – name: Colegio Oficial de Psicólogos (PSICODOC) – name: Colegio Oficial de Psicólogos del Principado de Asturias |
References | Kirk, R. E. 2013 Arnau, J.; Bendayan, R.; Blanca, M. J.; Bono, R. 2014; 67 Gueorguieva, R.; Krystal, J. 2004; 61 Gunasekara, F.; Richardson, K.; Carter, K.; Blakely, T. 2014; 43 Cooper, J. A.; Garson, G. D. 2016 Bono, R.; Arnau, J.; Vallejo, G. 2010; 3 Bradley, J. V. 1978; 31 Micceri, T. 1989; 105 Arnau, J.; Bono, R.; Blanca, M. J.; Bendayan, R. 2012; 44 Blanca, M. J.; Alarcón, R.; Arnau, J.; Bono, R.; Bendayan, R. 2017; 29 Haverkamp, N.; Beauducel, A. 2017; 8 De Livera, A.; Zaloumis, S.; Simpson, J. 2014; 19 Graham, J. W. 2009; 60 Tabachnick, B. G.; Fidell, L. 2007 Fernández, P.; Vallejo, G.; Livacic-Rojas, P. E.; Tuero, E. 2010 Davis, C. S. 2002 Vallejo, G.; Fernández, P.; Livacic-Rojas, P. 2010; 31 Keselman, H. J.; Huberty, C. J.; Lix, L. M.; Olejnik, S.; Cribbie, R. A.; Donahue, B.; Kowalchuk, R. K.; Lowman, L. L.; Petoskey, M. D.; Keselman, J. C.; Levin, J. R. 1998; 68 Vallejo, G.; Lozano, L. 2006; 18 Fernández, P.; Livacic-Rojas, P.; Vallejo, G. 2007; 7 Kherad-Pajouh, S.; Renaud, O. 2015; 56 Bosley, T. 2019 Zhao, J.; Wang, C.; Totton, S.; Cullen, J.; O'Connor, A. 2019; 14 Fleishman, A. I. 1978; 43 Tamura, R.; Buelke-Sam, J. 1992; 14 Keselman, H. J.; Algina, J.; Kowalchuk, R. 2001; 54 Meltzer, J. A. 2001 Goedert, K.; Boston, R.; Barrett, A. 2013; 7 Blanca, M. J.; Alarcón, R.; Bono, R. 2018; 9 Berkovits, I.; Hancock, G.; Nevitt, J. 2000; 60 Box, G. E. P. 1953; 40 Verma, J. P. 2016 Moskowitz, D. S.; Hershberger, S. L. 2013 Haverkamp, N.; Beauducel, A. 2019; 3 Armstrong, R. 2017; 37 Keselman, H. J.; Algina, J.; Kowalchuk, R. K. 2002; 37 Cohen, J. 1988 Kowalchuk, R. K.; Keselman, H. J.; Algina, J.; Wolfinger, R. D. 2004; 64 Blanca, M. J. 2004; 16 Bathke, A.; Schabenberger, O.; Tobias, R.; Madden, L. 2009; 63 Bono, R.; Arnau, J.; Blanca, M. J.; Alarcón, R. 2016; 48 Robey, R. R.; Barcikowski, R. S. 1992; 45 Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M. 2010; 6 Wilcox, R. R. 2022 Keselman, J. C.; Lix, L. M.; Keselman, H. J. 1996; 49 Bendayan, R.; Arnau, J.; Blanca, M. J.; Bono, R. 2014; 30 Schober, P.; Vetter, T. 2018; 127 Islam, M.; Chowdhury, R. 2017 Livacic-Rojas, P.; Vallejo, G.; Fernández, P. 2010; 39 Vallejo, G.; Fernández, M. P.; Livacic-Rojas, P. E.; Tuero-Herrero, E. 2011; 46 Bono, R.; Blanca, M. J.; Arnau, J.; Gómez-Benito, J. 2017; 8 Blanca, M. J.; Arnau, J.; López-Montiel, D.; Bono, R.; Bendayan, R. 2013; 9 2013 Sheskin, D. J. 2003 Raghavarao, D.; Padgett, L. 2014 Maurissen, J.; Vidmar, T. 2017; 59 Tippey, K.; Ritchey, P.; Ferris, T. 2015; 59 Singh, V.; Rana, R.; Singhal, R. 2013; 4 |
References_xml | – volume: 60 start-page: 877 issue: 6 year: 2000 end-page: 892 article-title: Bootstrap resampling approaches for repeated measure designs: Relative robustness to sphericity and normality violations publication-title: Educational and Psychological Measurement – volume: 7 year: 2013 article-title: Advancing the science of spatial neglect rehabilitation: An improved statistical approach with mixed linear modeling publication-title: Frontiers in Human Neuroscience – year: 2019 publication-title: Comparative power of the Friedman, Neave and Worthington match, Skillings-Mack, trimmed means repeated measures ANOVA, and bootstrap trimmed means repeated measures ANOVA tests – year: 2017 publication-title: Analysis of repeated measures data – year: 2016 publication-title: Power analysis – volume: 60 start-page: 549 year: 2009 end-page: 576 article-title: Missing data analysis: Making it work in the real world publication-title: Annual Review of Psychology – volume: 56 start-page: 947 issue: 4 year: 2015 end-page: 967 article-title: A general permutation approach for analyzing repeated measures ANOVA and mixed-model designs publication-title: Statistical Papers – volume: 40 start-page: 318 issue: 3-4 year: 1953 end-page: 335 article-title: Non-normality on test on variance publication-title: Biometrika – year: 2007 publication-title: Experimental designs using ANOVA – volume: 3 start-page: 1 issue: 3 year: 2010 end-page: 7 article-title: Modelización de diseños split-plot y estructuras de covarianza no estacionarias: un estudio de simulación [Modeling split-plot data and nonstationary covariance structures: A simulation study] publication-title: Escritos de Psicología - Psychological Writings – year: 2013 publication-title: Experimental design. Procedures for the behavioral sciences – volume: 31 start-page: 129 issue: 1 year: 2010 end-page: 148 article-title: Pruebas robustas para modelos ANOVA de dos factores con varianzas heterogéneas [Robust tests for two-way ANOVA models under heteroscedasticity] publication-title: Psicológica – volume: 64 start-page: 224 issue: 2 year: 2004 end-page: 242 article-title: The analysis of repeated measurements with mixed-model adjusted F tests publication-title: Educational and Psychological Measurement – volume: 31 start-page: 144 issue: 2 year: 1978 end-page: 152 article-title: Robustness? publication-title: British Journal of Mathematical and Statistical Psychology – volume: 3 issue: Article MP.2018.898 year: 2019 article-title: Differences of Type I error rates for ANOVA and Multilevel-Linear-Models using SAS and SPSS for repeated measures designs publication-title: Meta-Psychology – volume: 18 start-page: 293 issue: 2 year: 2006 end-page: 299 article-title: Modelos de análisis para diseños multivariados de medidas repetidas [Multivariate repeated measures designs] publication-title: Psicothema – year: 2001 publication-title: The effects on Type I error rate and power of the single-factor repeated measures ANOVA F-test and selected alternatives under non-normality and non-uniformity – volume: 30 start-page: 364 issue: 1 year: 2014 end-page: 371 article-title: Comparison of the procedures of Fleishman and Ramberg et al. for generating non-normal data in simulation studies publication-title: Anales de Psicología – year: 2013 publication-title: SAS® 9.4 guide to software Updates – year: 2002 publication-title: Statistical methods for the analysis of repeated measurements – volume: 63 start-page: 239 issue: 3 year: 2009 end-page: 246 article-title: Greenhouse-Geisser adjustment and the ANOVA-type statistic: Cousins or twins? publication-title: The American Statistician – volume: 54 start-page: 1 issue: 1 year: 2001 end-page: 2 article-title: The analysis of repeated measures designs: A review publication-title: British Journal of Mathematical & Statistical Psychology – volume: 8 issue: Article 1841 year: 2017 article-title: Violation of the sphericity assumption and its effect on Type-I error rates in repeated measures ANOVA and multi-level linear models (MLM) publication-title: Frontiers in Psychology – volume: 8 issue: Article 1602 year: 2017 article-title: Non-normal distributions commonly used in health, education, and social sciences: A systematic review publication-title: Frontiers in Psychology – volume: 44 start-page: 1224 year: 2012 end-page: 1238 article-title: Using the linear mixed model to analyze nonnormal data distributions in longitudinal designs publication-title: Behavior Research Methods – volume: 59 start-page: 78 year: 2017 end-page: 84 article-title: Repeated-measure analyses: Which one? A survey of statistical models and recommendations for reporting publication-title: Neurotoxicology and Teratology – year: 2003 publication-title: Handbook of parametric and nonparametric statistical procedures – volume: 14 start-page: 205 issue: 3 year: 1992 end-page: 221 article-title: The use of repeated measures analyses in developmental toxicology studies publication-title: Neurotoxicology and Teratology – volume: 59 start-page: 342 issue: 1 year: 2015 end-page: 346 article-title: Crossover-repeated measures designs: Clarifying common misconceptions for a valuable human factors statistical technique publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting – volume: 48 start-page: 1621 issue: 4 year: 2016 end-page: 1630 article-title: Sphericity estimation bias for repeated measures designs in simulation studies publication-title: Behavior Research Methods – volume: 39 start-page: 624 issue: 3 year: 2010 end-page: 664 article-title: Analysis of Type I error rates of univariate and multivariate procedures in repeated measures designs publication-title: Communications in Statistics - Simulation and Computation – year: 2013 publication-title: Modeling intraindividual variability with repeated measures data: Methods and applications – volume: 46 start-page: 900 issue: 6 year: 2011 end-page: 937 article-title: Comparison of modern methods for analyzing repeated measures data with missing data publication-title: Multivariate Behavioral Research – year: 2016 publication-title: Repeated measures design for empirical researchers – volume: 6 start-page: 147 issue: 4 year: 2010 end-page: 151 article-title: Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption publication-title: Methodology: European Journal of Research Methods for the Behavioral and Social Sciences – volume: 127 start-page: 569 issue: 2 year: 2018 end-page: 575 article-title: Repeated measures designs and analysis of longitudinal data: If at first you do not succeed - try, try again publication-title: Anesthesia and Analgesia – volume: 43 start-page: 521 issue: 4 year: 1978 end-page: 532 article-title: A method for simulating non-normal distributions publication-title: Psychometrika – volume: 14 issue: 8 year: 2019 article-title: Reporting and analysis of repeated measurements in preclinical animal experiments publication-title: PloS One – year: 2022 publication-title: Introduction to robust estimation and hypothesis testing – volume: 37 start-page: 585 issue: 5 year: 2017 end-page: 593 article-title: Recommendations for analysis of repeated‐measures designs: Testing and correcting for sphericity and use of MANOVA and mixed model analysis publication-title: Ophthalmic & Physiological Optics – volume: 61 start-page: 310 issue: 3 year: 2004 end-page: 317 article-title: Move over ANOVA: Progress in analyzing repeated-measures data and its reflection in papers published in the Archives of General Psychiatry publication-title: Archives of General Psychiatry – volume: 16 start-page: 509 issue: 3 year: 2004 end-page: 518 article-title: Alternativas de análisis estadístico en los diseños de medidas repetidas [Approaches to the statistical analysis of repeated measures designs] publication-title: Psicothema – volume: 19 start-page: 155 issue: 2 year: 2014 end-page: 161 article-title: Models for the analysis of repeated continuous outcome measures in clinical trials: Analysis of repeated continuous measures publication-title: Respirology – volume: 4 start-page: 77 issue: 2 year: 2013 end-page: 81 article-title: Analysis of repeated measurement data in the clinical trials publication-title: Journal of Ayurveda and Integrative Medicine – volume: 37 start-page: 331 issue: 3 year: 2002 end-page: 357 article-title: A comparison of data analysis strategies for testing omnibus effects in higher-order repeated measures designs publication-title: Multivariate Behavioral Research, – year: 1988 publication-title: Statistical power analysis for the behavioral sciences – volume: 43 start-page: 264 issue: 1 year: 2014 end-page: 269 article-title: Fixed effects analysis of repeated measures data publication-title: International Journal of Epidemiology – volume: 49 start-page: 275 issue: 2 year: 1996 end-page: 298 article-title: The analysis of repeated measurements: A quantitative research synthesis publication-title: British Journal of Mathematical and Statistical Psychology – volume: 29 start-page: 552 issue: 4 year: 2017 end-page: 557 article-title: Non-normal data: Is ANOVA still a valid option? publication-title: Psicothema – volume: 7 start-page: 153 issue: 1 year: 2007 end-page: 175 article-title: Cómo elegir la mejor prueba estadística para analizar un diseño de medidas repetidas [How to choose the best statistical analysis for analyzing a repeated measures design] publication-title: International Journal of Clinical Psychology – volume: 9 year: 2018 article-title: Current practices in data analysis procedures in psychology: What has changed? publication-title: Frontiers in Psychology – volume: 9 start-page: 78 issue: 2 year: 2013 end-page: 84 article-title: Skewness and kurtosis in real data samples publication-title: Methodology: European Journal of Research Methods for the Behavioral and Social Sciences – volume: 67 start-page: 408 issue: 3 year: 2014 end-page: 429 article-title: Should we rely on the Kenward-Roger approximation when using linear mixed models if the groups have different distributions? publication-title: British Journal of Mathematical and Statistical Psychology – volume: 105 start-page: 156 issue: 1 year: 1989 end-page: 166 article-title: The unicorn, the normal curve, and other improbable creatures publication-title: Psychological Bulletin – volume: 45 start-page: 283 issue: 2 year: 1992 end-page: 288 article-title: Type I error and the number of iterations in Monte Carlo studies of robustness publication-title: British Journal of Mathematical and Statistical Psychology – year: 2014 publication-title: Repeated measurements and cross-over designs – start-page: 193 year: 2010 end-page: 198 article-title: Características y análisis de los diseños de medidas repetidas en la investigación en España en los últimos 10 años [Characteristics and analysis of repeated measures designs used in research in Spain over the last 10 years] publication-title: Actas del XI Congreso de Metodologías de las Ciencias Sociales y de la Salud – volume: 68 start-page: 350 issue: 3 year: 1998 end-page: 386 article-title: Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA analyses publication-title: Review of Educational Research |
SSID | ssj0056372 |
Score | 2.566407 |
Snippet | Repeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical analyses, the... Background:Repeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical analyses,... Abstract Background: Repeated measures designs are commonly used in health and social sciences research. Although there are other, more advanced, statistical... |
SourceID | scielo proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 21 |
SubjectTerms | Analysis of Variance Between-subjects design Computer Simulation Humans Psychology Psychology, Clinical Psychology, Developmental Psychology, Experimental Psychology, Multidisciplinary Research Design Sample Size Variance analysis Within-subjects design |
Title | Non-normal Data in Repeated Measures ANOVA: Impact on Type I Error and Power |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36695847 https://www.proquest.com/docview/2777040477 https://www.proquest.com/docview/2769591677 http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1886-144X2023000100003&lng=en&tlng=en |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XLigQku7lK5cCakHlIITx056qQIEscAmUbq0yymKXye0u8By4N93JskuICSu8eShGc8339jxDCH7LDS-YoqDI4XW49I3XqxjNIgIleNW8uaQ2DAT59f8YhyOuwW3h-63ygUmNkBtphrXyA99KSVMOC7l79mdh12jcHe1a6GxStYBgiNIvtaP06woF1gciqBp34SFwTxgQmF7bEYGAT-cgRamTWVUyP_9n37svw5Nb_gmFhMFf7t9GYDOPpDNjjnSpDX1Flmxk22ysQSwp4_kKsNqG3k5TK7oaTJK6CCjZVqkCaATHaaAoKBummT53-QXHQyL5GRE84yOboqUDmhalnkJo6e0yP-l5SdyfZaOTs69rluCpznjcw-YlFFSKEgQeMTrQBoVW8esM84yZ2In7FENCV5kgCIop1ykZcCcjq3VFq4HO2RtMp3YL4QyfA6vj2oIZdwBpkW-roUWjhtXKxb3CFsoqtJdKXHsaHFbQUqByq1eK7cC5fbIwfKeWVtI413pvYX-q86pHqrnKdAj35fD4A64x1FP7PQRZUQcAuVFmc-t3ZavCwSMQTTukR-tIZ8f_YdFkYA0iI-xnTwSXwzkwe77n_GVbKB4uyKzR9bm94_2G3CUuep3E7EPLH1w2W8y_f-WWN8j |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7YFeEJTXQqFGAnFAoXXi2AkSQqGbakM3D4W0LKcQJ_ap2l3oVqh_it_IeJNsW1Xqrdf4kWie39iZGYC31G1sSSVDRXKVxYTdWH7tG4ZwV2qmBFslicUJHx-zb1N3ugH_-lwY81tlbxNXhrqZ1-aMfM8WQqDAMSG-LH5bpmuUuV3tW2i0YnGkLv5iyHb2ORohf9_Z9mFYHIytrquAVTPKlhYijkYKLhFIM49VjmikrzRVutGK6sbXXO1XGAh5DbpSqaX2auFQXftK1QqfO7jvPdhkDoYyA9j8GiZZ3tt-lzurdlGmEJmFyMtt03SE47C9BVJ9vqrEaqPf_Gj79nVXeAPfmuKlqN-nVx3e4UN40CFVErSi9Qg21GwbttYG8-IxTBJT3SPN42BCRkERkCgheZiFAVpDEodosZG9JEjSk-ATieIsOChImpDiZxaSiIR5nuY4OiJZ-iPMn8DxndDxKQxm85l6DoSafVi1X6HrZBptqGfXFa-5Zo2uJPWHQHtClXVXutx00DgtMYQxxC2vE7dE4g7hw3rNoi3ccevsnZ7-ZafEZ-WlyA3hzXoY1c_cqVQzNT83c7jvIsQ2c561fFu_zuE4ht5_CO9bRl5u_Z16Hsewi01N-3oDtA1wcF7c_hm7cH9cxJNyEiVHL2HLLG1Pg3ZgsPxzrl4hPlrK151QEvh113rwH3VbHDU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEK9IN4ECiwSiAMyydrrXRsJIdM4qmliWyYt4WS83t1TlQSaCvWv8euYje2UCqm3Xr0va57f7GMG4DX1lSupZKhIvnaYcJUT1qFlCPelYVqwzSOxacoPj9mXuT_fgT_dWxh7rbKziRtDrZa13SMfuEIIFDgmxMC01yLy0fjT6qdjK0jZk9aunEYjIkf64jeGb2cfkxHy-o3rjuPZwaHTVhhwakbZ2kH0oaTgEkE1C1jlCSVDbag2ymhqVGi4HlYYFAUK3ao00gS18KipQ61rjd89nPcW7AqMioY92P0cp3nR-QGfe5vSUTYpmYMozG-e7AjPY4MVcmC5ycrqog9974buVbf4H9a1iUxR10__dX7ju3CnRa0kasTsHuzoxX3Y2xrPiwcwSW2mj6yYRhMyimYRSVJSxHkcoWUk0xitN7KaRGl2En0gyTSPDmYkS8nsex6ThMRFkRXYOiJ59i0uHsLxjdDxEfQWy4V-AoTaeVg1rNCNMoP2NHDritfcMGUqScM-0I5QZd2mMbfVNE5LDGcsccurxC2RuH14tx2zapJ4XNt7v6N_2Sr0WXkpfn14tW1GVbTnK9VCL89tHx76CLdtn8cN37bLeRzbEAn04W3DyMupv9Ig4BiCsbktZW9BtwUR3tPrf-Ml3Eb5LydJevQM9uzIZmNoH3rrX-f6OUKltXzRyiSBHzetBn8B2rogag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-normal+Data+in+Repeated+Measures+ANOVA%3A+Impact+on+Type+I+Error+and+Power&rft.jtitle=Psicothema&rft.au=Blanca%2C+Mar%C3%ADa+J&rft.au=Arnau%2C+Jaume&rft.au=Garc%C3%ADa-Castro%2C+F+J&rft.au=Alarc%C3%B3n%2C+Rafael&rft.date=2023-01-01&rft.issn=1886-144X&rft.eissn=1886-144X&rft.volume=35&rft.issue=1&rft.spage=21&rft_id=info:doi/10.7334%2Fpsicothema2022.292&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0214-9915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0214-9915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0214-9915&client=summon |