Dynamic domain boundaries: chemical dopants carried by moving twin walls
Domain walls and specifically ferroelastic twin boundaries are depositaries and fast diffusion pathways for chemical dopants and intrinsic lattice defects. Ferroelastic domain patterns act as templates for chemical structures where the walls are the device and not the bulk. Several examples of such...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 25; no. 3; pp. 1588 - 161 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
18.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Domain walls and specifically ferroelastic twin boundaries are depositaries and fast diffusion pathways for chemical dopants and intrinsic lattice defects. Ferroelastic domain patterns act as templates for chemical structures where the walls are the device and not the bulk. Several examples of such engineered domain boundaries are given. Moving twin boundaries are shown to carry with them the dopants, although the activation of this mechanism depends sensitively on the applied external force. If the force is too weak, the walls remain pinned while too strong forces break the walls free of the dopants and move them independently. Several experimental methods and approaches are discussed.
Ions along travel preferentially along twin boundaries (black lines in the center with shifted atoms). Moving domain walls carry defects with them, allowing chemical patterning. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d2cp04908b |