Numerical analysis of magneto-radiated annular fin natural-convective heat transfer performance using advanced ternary nanofluid considering shape factors with heating source

The fins performance under natural convection is essential to make it more functional for large scale applications more specifically in thermal engineering. For this, it is important to introduce new techniques to enhance the fins performance instead of traditional way. Thus, this study introduces a...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 44; p. 102825
Main Authors Adnan, AlBaidani, Mashael M., Mishra, Nidhish Kumar, Alam, Mohammad Mahtab, Eldin, Sayed M., AL-Zahrani, Asla A., Akgul, Ali
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The fins performance under natural convection is essential to make it more functional for large scale applications more specifically in thermal engineering. For this, it is important to introduce new techniques to enhance the fins performance instead of traditional way. Thus, this study introduces a new way to make the fin more efficient using ternary nanomaterial under nanoparticles shape factor. The annular fin significantly contributes in electronics to exhaust the hot air, injector pumps and applied thermal engineering. and Methodology: This work focuses on the fin energy model using shape factors. Therefore, the ternary nanofluid, natural convection, thermal radiation and magnetic field used to develop the model. Then, the RKF-45 implemented to investigate physical results. Keen analysis of the physical results reveal that the coefficient of thermal conductivity ranging from 0.0% < α1 < 3.0% and natural convection have major role in the fins energy performance. Induction of magnetic field and thermal radiation Rd are reliable for the fin cooling and, heating source Q1 = 0.2,0.4,0.6,0.8 promote the fin energy capability in the existence of (Al2O3–CuO–Cu) ternary nanomaterial with concentration factor up to 2%. On the comparative basis, ternary nanomaterial makes the fin more efficient than hybrid nanomaterial.
ISSN:2214-157X
2214-157X
DOI:10.1016/j.csite.2023.102825