Perturbation of U2AF65/NXF1-mediated RNA nuclear export enhances RNA toxicity in polyQ diseases

Expanded CAG RNA has recently been reported to contribute to neurotoxicity in polyglutamine (polyQ) degeneration. In this study, we showed that RNA carrying an expanded CAG repeat progressively accumulated in the cell nucleus of transgenic Drosophila that displayed degeneration. Our gene knockdown a...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 20; no. 19; pp. 3787 - 3797
Main Authors Tsoi, Ho, Lau, Chi Kong, Lau, Kwok Fai, Chan, Ho Yin Edwin
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Expanded CAG RNA has recently been reported to contribute to neurotoxicity in polyglutamine (polyQ) degeneration. In this study, we showed that RNA carrying an expanded CAG repeat progressively accumulated in the cell nucleus of transgenic Drosophila that displayed degeneration. Our gene knockdown and mutant analyses demonstrated that reduction of U2AF50 function, a gene involved in RNA nuclear export, intensified nuclear accumulation of expanded CAG RNA and resulted in a concomitant exacerbation of expanded CAG RNA-mediated toxicity in vivo. We found that the human U2AF50 ortholog, U2AF65, interacted directly and specifically with expanded CAG RNA via its RRM3 domain. We further identified an RNA/protein complex that consisted of expanded CAG RNA, U2AF65 and the NXF1 nuclear export receptor. The U2AF65 protein served as an adaptor to link expanded CAG RNA to NXF1 for RNA export. Finally, we confirmed the nuclear accumulation of expanded CAG RNA in symptomatic polyQ transgenic mice and also observed a neurodevelopmental downregulation of U2AF65 protein levels in mice. Altogether, our findings demonstrate that the cell nucleus is a site where expanded CAG RNA exerts its toxicity. We also provide a novel mechanistic explanation to how perturbation of RNA nuclear export would contribute to polyQ degeneration.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0964-6906
1460-2083
DOI:10.1093/hmg/ddr297