Type-2 Fuzzy Control for a Flexible-joint Robot Using Voltage Control Strategy
ype-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control strategy. In order to take into account the...
Saved in:
Published in | International journal of automation and computing Vol. 10; no. 3; pp. 242 - 255 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.06.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1476-8186 2153-182X 1751-8520 2153-1838 |
DOI | 10.1007/s11633-013-0717-x |
Cover
Loading…
Summary: | ype-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control strategy. In order to take into account the whole robotic system including the dynamics of actuators and the robot manipulator, the voltages of motors are used as inputs of the system. To highlight the capabilities of the control system, a flexible joint robot which is highly nonlinear, heavily coupled and uncertain is used. In addition, to improve the control performance, the parameters of the primary membership functions of IT2FLC are optimized using particle swarm optimization (PSO). A comparative study between the proposed IT2FLC and type-1 fuzzy logic controller (T1FLC) is presented to better assess their respective performance in presence of external disturbance and unmodelled dynamics. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a two-link flexible-joint robot driven by permanent magnet direct current motors. Simulation results show the superiority of the IT2FLC over the T1FLC in terms of accuracy, robustness and interpretability. |
---|---|
Bibliography: | Type-2 fuzzy controller, flexible-joint robots, voltage control strategy, particle swarm optimization (PSO), actuator. 11-5350/TP ype-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control strategy. In order to take into account the whole robotic system including the dynamics of actuators and the robot manipulator, the voltages of motors are used as inputs of the system. To highlight the capabilities of the control system, a flexible joint robot which is highly nonlinear, heavily coupled and uncertain is used. In addition, to improve the control performance, the parameters of the primary membership functions of IT2FLC are optimized using particle swarm optimization (PSO). A comparative study between the proposed IT2FLC and type-1 fuzzy logic controller (T1FLC) is presented to better assess their respective performance in presence of external disturbance and unmodelled dynamics. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a two-link flexible-joint robot driven by permanent magnet direct current motors. Simulation results show the superiority of the IT2FLC over the T1FLC in terms of accuracy, robustness and interpretability. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1476-8186 2153-182X 1751-8520 2153-1838 |
DOI: | 10.1007/s11633-013-0717-x |