Long-term effect of pastures on soil quality in acid soil of North-East India

North-East India is known for its complex, diverse, risk-prone, and fragile hilly ecosystem. Natural resources in terms of soil, water, vegetation, and soil organic carbon (SOC) are much degraded. Effects of long-term perennial grasses maintained at a permanent fodder block of the ICAR Research Comp...

Full description

Saved in:
Bibliographic Details
Published inAustralian journal of soil research Vol. 47; no. 4; pp. 372 - 379
Main Authors Ghosh, P.K, Saha, R, Gupta, J.J, Ramesh, T, Das, Anup, Lama, T.D, Munda, G.C, Bordoloi, Juri Sandhya, Verma, Med Ram, Ngachan, S.V
Format Journal Article
LanguageEnglish
Published Collingwood, Victoria: CSIRO Publishing 01.01.2009
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:North-East India is known for its complex, diverse, risk-prone, and fragile hilly ecosystem. Natural resources in terms of soil, water, vegetation, and soil organic carbon (SOC) are much degraded. Effects of long-term perennial grasses maintained at a permanent fodder block of the ICAR Research Complex, Meghalaya, on soil quality were examined after 15 cropping cycles. The aims were (i) to ascertain whether perennial grass primarily maintained as fodder source for ruminants could conserve resources and improve soil quality in the hilly ecosystem of North-East India, and (ii) to select a suitable perennial grass to minimise land degradation, restore SOC, and improve the soil quality. Soil samples were collected in 2007-08 (dry season) from plots of 8 perennial grasses [Setaria sphacelata (setaria), Brachieria rosenesis (congosignal), Thysanolaena maxima (broom), Penicum maximum var. Makunia and var. Hamil (guinea), Pennisetum purpureum (napier), Paspalum conjugalum (paspalam), Arachis pintoi (wild groundnut)] and analysed for physical, chemical, and biological properties. A control plot had no grass cover. Hamil and Makunia produced a large amount of green fodder, while Makunia, paspalam, setaria, and congosignal had greatest root biomass. Relative to the control, soil under perennial grasses showed increases of ~30% SOC, 70% mean weight diameter, 20% available soil water, 40% hydraulic conductivity, 63% infiltration rate, and 10% soil microbial biomass carbon. Among grasses, soil under setaria, congosignal, and Makunia had higher values of these attributes than under other species because of better soil binding through an extensive root system. Improvement of soil physical properties and processes under these grasses, coupled with complete ground cover, reduced soil erosion by ~33% and also signified ecological benefits through C-sequestration. Soil quality management in the fragile ecosystem of North-East India should include permanent pastural grasses, particularly, setaria, congosignal, and Makunia.
Bibliography:http://dx.doi.org/10.1071/SR08169
ISSN:0004-9573
1446-568X
DOI:10.1071/SR08169