Image Projection Network: 3D to 2D Image Segmentation in OCTA Images
We present an image projection network (IPN), which is a novel end-to-end architecture and can achieve 3D-to-2D image segmentation in optical coherence tomography angiography (OCTA) images. Our key insight is to build a projection learning module (PLM) which uses a unidirectional pooling layer to co...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 39; no. 11; pp. 3343 - 3354 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present an image projection network (IPN), which is a novel end-to-end architecture and can achieve 3D-to-2D image segmentation in optical coherence tomography angiography (OCTA) images. Our key insight is to build a projection learning module (PLM) which uses a unidirectional pooling layer to conduct effective features selection and dimension reduction concurrently. By combining multiple PLMs, the proposed network can input 3D OCTA data, and output 2D segmentation results such as retinal vessel segmentation. It provides a new idea for the quantification of retinal indicators: without retinal layer segmentation and without projection maps. We tested the performance of our network for two crucial retinal image segmentation issues: retinal vessel (RV) segmentation and foveal avascular zone (FAZ) segmentation. The experimental results on 316 OCTA volumes demonstrate that the IPN is an effective implementation of 3D-to-2D segmentation networks, and the uses of multi-modality information and volumetric information make IPN perform better than the baseline methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0278-0062 1558-254X 1558-254X |
DOI: | 10.1109/TMI.2020.2992244 |