Synthesis and evaluation of biological and antitumor activities of 5,7-dimethyl- oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives as novel inhibitors of FGFR1

A series of 5,7-dimethyl-oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives, N5a-5l, was designed, synthesized and evaluated for their FGFR1-inhibition ability as well as cytotoxicity against three cancer cell lines (H460, B16F10 and A549) in vitro. Several compounds displayed good-to-excellent p...

Full description

Saved in:
Bibliographic Details
Published inJournal of enzyme inhibition and medicinal chemistry Vol. 30; no. 6; pp. 961 - 966
Main Authors Ye, Faqing, Wang, Yuewu, Nian, Siyun, Wang, Yu, Chen, Di, Yu, Shufang, Wang, Sicen
Format Journal Article
LanguageEnglish
Published England Informa Healthcare 02.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A series of 5,7-dimethyl-oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives, N5a-5l, was designed, synthesized and evaluated for their FGFR1-inhibition ability as well as cytotoxicity against three cancer cell lines (H460, B16F10 and A549) in vitro. Several compounds displayed good-to-excellent potency against these cancer cell lines compared to SU5402. Structure-activity relationship analyses indicated that compounds with a rigid structure and more heteroatoms at the side chain of the parent ring were more effective than those without these substitutions. The compound N5g (37.4% FGFR1 inhibition at 1.0 μM) was identified to have the most potent antitumor activities, with IC 50 values of 5.472, 4.260 and 5.837 μM against H460, B16F10 and A549 cell lines, respectively. Together, our results suggest that 5,7-dimethyl-oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives may serve as potential agents for the treatment of FGFR1-mediated cancers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1475-6366
1475-6374
DOI:10.3109/14756366.2014.1002401