Activation of the calcineurin signaling pathway induces atrial hypertrophy during atrial fibrillation

Atrial tachyarrhythmia (AF) alters intracellular calcium homeostasis and induces cellular hypertrophy of atrial myocytes. The impact of the calcium-dependent calcineurin pathway on the development of AF-induced atrial hypertrophy has not yet been analyzed. In this study, atrial tissue samples from p...

Full description

Saved in:
Bibliographic Details
Published inCellular and molecular life sciences : CMLS Vol. 63; no. 3; pp. 333 - 342
Main Authors Bukowska, A, Lendeckel, U, Hirte, D, Wolke, C, Striggow, F, Röhnert, P, Huth, C, Klein, H U, Goette, A
Format Journal Article
LanguageEnglish
Published Switzerland Springer Nature B.V 01.02.2006
Birkhäuser-Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atrial tachyarrhythmia (AF) alters intracellular calcium homeostasis and induces cellular hypertrophy of atrial myocytes. The impact of the calcium-dependent calcineurin pathway on the development of AF-induced atrial hypertrophy has not yet been analyzed. In this study, atrial tissue samples from patients with sinus rhythm and chronic persistent atrial fibrillation (CAF) were used to determine changes in expression and activity of calcineurin A (CnA), and its relation to CnA-regulated transcription factors NFATc1-4, and hypertrophic markers ANP, troponin I, and beta-MHC. CnA phosphatase activity and CnAbeta protein contents were significantly upregulated in patients with CAF. Calcineurin activation led to dephosphorylation, redistribution, and subsequent accumulation of NFATc3 in nuclei during CAF, and expression of hypertrophic genes was increased. CAF-dependent changes were reproduced by ex vivo pacing (2-4 Hz) of human atrial tissue slices. FK506 abolished the hypertrophic response induced by electrical-field stimulation. Atrial tachyarrhythmia causes atrial hypertrophy by activation of the CnA signal pathway, which thereby contributes to structural remodeling of human atria.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-682X
1420-9071
DOI:10.1007/s00018-005-5353-3