Expression of glucose transporter 1 in adult and developing human peripheral nerve

Northern hybridization of total RNA isolated from adult human sciatic nerve demonstrated a readily detectable hybridization signal for glucose transporter 1 (GLUT 1) mRNA. Western blot analysis demonstrated that GLUT 1 proteins extracted from adult human and from mature rat sciatic nerves had differ...

Full description

Saved in:
Bibliographic Details
Published inDiabetologia Vol. 36; no. 2; p. 133
Main Authors Muona, P, Jaakkola, S, Salonen, V, Peltonen, J
Format Journal Article
LanguageEnglish
Published Germany 01.02.1993
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Northern hybridization of total RNA isolated from adult human sciatic nerve demonstrated a readily detectable hybridization signal for glucose transporter 1 (GLUT 1) mRNA. Western blot analysis demonstrated that GLUT 1 proteins extracted from adult human and from mature rat sciatic nerves had different electrophoretical mobilities. The migration positions of human and rat GLUT 1 proteins corresponded to 60-70 kDa and 55-60 kDa, respectively, as estimated by markers with known molecular masses. Indirect immunofluorescence staining localized GLUT 1 to the perineurium in the adult human sciatic nerve. Only a few endoneurial capillaries of human adult nerve stained positively for GLUT 1, which was in contrast to rat peripheral nerve where most endoneurial capillaries were positive for GLUT 1. In developing human nerves, the staining pattern for GLUT 1 was markedly different from that of the adult nerves: at 14 weeks, the perineurial cells were entirely negative for GLUT 1. Between 22 and 26 weeks of gestation, the staining reaction for GLUT 1 in the perineurium became markedly more prominent, and by 35 weeks the intense perineurial staining resembled that observed in the adult human nerves. In contrast to adult nerves, both endo- and epineurial blood vessels stained intensely for GLUT 1 in the fetal samples. Thus, the immunoreactivity for GLUT 1 in the perineurium seems to increase concomitant with the maturation of barrier properties of perineurium, whereas the transient expression of GLUT 1 in the vasculature of developing nerve may have a specific role in the proliferating endothelial cells.
ISSN:0012-186X
DOI:10.1007/bf00400694