Prediction and analysis of redox-sensitive cysteines using machine learning and statistical methods

Reactive oxygen species are produced by a number of stimuli and can lead both to irreversible intracellular damage and signaling through reversible post-translational modification. It is unclear which factors contribute to the sensitivity of cysteines to redox modification. Here, we used statistical...

Full description

Saved in:
Bibliographic Details
Published inBiological chemistry Vol. 402; no. 8; pp. 925 - 935
Main Authors Keßler, Marcus, Wittig, Ilka, Ackermann, Jörg, Koch, Ina
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 27.07.2021
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Reactive oxygen species are produced by a number of stimuli and can lead both to irreversible intracellular damage and signaling through reversible post-translational modification. It is unclear which factors contribute to the sensitivity of cysteines to redox modification. Here, we used statistical and machine learning methods to investigate the influence of different structural and sequence features on the modifiability of cysteines. We found several strong structural predictors for redox modification. Sensitive cysteines tend to be characterized by higher exposure, a lack of secondary structure elements, and a high number of positively charged amino acids in their close environment. Our results indicate that modified cysteines tend to occur close to other post-translational modifications, such as phosphorylated serines. We used these features to create models and predict the presence of redox-modifiable cysteines in human mitochondrial complex I as well as make novel predictions regarding redox-sensitive cysteines in proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1431-6730
1437-4315
1437-4315
DOI:10.1515/hsz-2020-0321