Action Recognition Using a Bio-Inspired Feedforward Spiking Network
We propose a bio-inspired feedforward spiking network modeling two brain areas dedicated to motion (V1 and MT), and we show how the spiking output can be exploited in a computer vision application: action recognition. In order to analyze spike trains, we consider two characteristics of the neural co...
Saved in:
Published in | International journal of computer vision Vol. 82; no. 3; pp. 284 - 301 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.05.2009
Springer Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a bio-inspired feedforward spiking network modeling two brain areas dedicated to motion (V1 and MT), and we show how the spiking output can be exploited in a computer vision application: action recognition. In order to analyze spike trains, we consider two characteristics of the neural code: mean firing rate of each neuron and synchrony between neurons. Interestingly, we show that they carry some relevant information for the action recognition application. We compare our results to Jhuang et al. (Proceedings of the 11th international conference on computer vision, pp. 1–8,
2007
) on the Weizmann database. As a conclusion, we are convinced that spiking networks represent a powerful alternative framework for real vision applications that will benefit from recent advances in computational neuroscience. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0920-5691 1573-1405 |
DOI: | 10.1007/s11263-008-0201-1 |