Quantum Switch as a Thermodynamic Resource in the Context of Passive States
In recent years, many works have explored possible advantages of indefinite causal order, with the main focus on its controlled implementation known as quantum switch. In this paper, we tackle advantages in quantum thermodynamics, studying whether quantum switch is capable of activating a passive st...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 26; no. 2; p. 153 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In recent years, many works have explored possible advantages of indefinite causal order, with the main focus on its controlled implementation known as quantum switch. In this paper, we tackle advantages in quantum thermodynamics, studying whether quantum switch is capable of activating a passive state, either alone or with extra resources (active control state) and/or operations (measurement of the control system). By disproving the first possibility and confirming the second one, we show that quantum switch is not a thermodynamic resource in the discussed context, though it can facilitate work extraction given external resources. We discuss our findings by considering specific examples: a qubit system subject to rotations around the x and y axes in the Bloch sphere, as well as general unitaries from the U(2) group; and the system as a quantum harmonic oscillator with displacement operators, as well as with a combination of displacement and squeeze operators. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e26020153 |