Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition

This paper explores multi-task learning (MTL) for face recognition. First, we propose a multi-task convolutional neural network (CNN) for face recognition, where identity classification is the main task and pose, illumination, and expression (PIE) estimations are the side tasks. Second, we develop a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 27; no. 2; pp. 964 - 975
Main Authors Yin, Xi, Liu, Xiaoming
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper explores multi-task learning (MTL) for face recognition. First, we propose a multi-task convolutional neural network (CNN) for face recognition, where identity classification is the main task and pose, illumination, and expression (PIE) estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weights to each side task, which solves the crucial problem of balancing between different tasks in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses in a joint framework. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the PIE variations from the learnt identity features. Extensive experiments on the entire multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in multi-PIE for face recognition. Our approach is also applicable to in-the-wild data sets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2017.2765830