Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter

In this paper, the design of a thermophotovoltaic (TPV) filter with high-pass characteristics is presented. The filter is in the form of a frequency selective structure (FSS) with cascaded inhomogeneous dielectric substrates. The goal is to allow for more design flexibility using dielectric periodic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 53; no. 7; pp. 2282 - 2289
Main Authors Kiziltas, G., Volakis, J.L., Kikuchi, N.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the design of a thermophotovoltaic (TPV) filter with high-pass characteristics is presented. The filter is in the form of a frequency selective structure (FSS) with cascaded inhomogeneous dielectric substrates. The goal is to allow for more design flexibility using dielectric periodic structures to deliver a sharper filter response. Therefore, the primary focus is to design a periodic material substrate composition (supporting FSS elements) using a topology optimization technique known as the density method. The design problem is formulated as a general nonlinear optimization problem and sequential linear programming is used to solve the optimization problem with the sensitivity analysis based on the adjoint variable method for complex variables. A key aspect of the proposed design method is the integration of optimization tools with a fast simulator based on the finite element-boundary integral method. The capability of the design method is demonstrated by designing the material distribution for a TPV filter subject to pre-specified bandwidth and compactness criteria.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2005.851352