Decreased glycolytic metabolism contributes to but is not the inducer of apoptosis following IL-3-starvation

IL-3 regulates the glycolytic pathway. In Baf-3 cells IL-3 starvation leads to a decrease in glucose uptake and in lactate production. To determine if there is a link between the decreased metabolism induced by growth factor-starvation and the induction of cell death, we have compared the cell death...

Full description

Saved in:
Bibliographic Details
Published inCell death and differentiation Vol. 9; no. 10; pp. 1147 - 1157
Main Authors Gonin-Giraud, S, Mathieu, A-L, Diocou, S, Tomkowiak, M, Delorme, G, Marvel, J
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.10.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:IL-3 regulates the glycolytic pathway. In Baf-3 cells IL-3 starvation leads to a decrease in glucose uptake and in lactate production. To determine if there is a link between the decreased metabolism induced by growth factor-starvation and the induction of cell death, we have compared the cell death characteristics and the metabolic modifications induced by IL-3-deprivation or glucose-deprivation in Baf-3 cells. We show that in both conditions cells die by an apoptotic process which involves the activation of similar Caspases. Different metabolic parameters (i.e. intracellular ATP levels and lactate accumulation in the culture medium) were measured. We show that IL-3 deprivation leads to a partial decrease in lactate production in contrast to glucose deprivation that completely inhibits lactate production. Similarly following IL-3-starvation a significant drop in the intracellular ATP levels in live cells is observed only after 16 h when a large fraction, more than 50 per cent of cells, is already apoptotic. On the contrary, glucose deprivation is followed by an abrupt decrease in ATP levels in the first 2 h of treatment. However, in the presence of IL-3, cells are able to survive for an extended time in these conditions since 70% of cells survived with low ATP levels for up to 16 h. This was not due to partial inhibition of the apoptotic process by the low level of ATP as glucose-deprivation in the absence of IL-3 led to faster death kinetics of Baf-3 cells compared with IL-3 starvation only. These results indicate that the drop in ATP levels and the triggering of apoptosis can be dissociated in time and that when the glycolytic pathway is strongly inhibited, cells are able to survive with relatively low ATP levels if IL-3 is present. Finally we show that induction of bcl-x by IL-3 protects cells from glucose-deprivation induced cell death.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1350-9047
1476-5403
DOI:10.1038/sj.cdd.4401079