Ultralow-Loss and Broadband Micromachined Transmission Line Inductors for 30-60 GHz CMOS RFIC Applications
In this paper, for the first time, we demonstrate that ultralow-loss and broadband transmission line (TL) inductors can be obtained by using the CMOS-process compatible backside inductively coupled-plasma (ICP) deep-trench technology to selectively remove the silicon underneath the TL inductors. The...
Saved in:
Published in | IEEE transactions on electron devices Vol. 54; no. 9; pp. 2512 - 2519 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, for the first time, we demonstrate that ultralow-loss and broadband transmission line (TL) inductors can be obtained by using the CMOS-process compatible backside inductively coupled-plasma (ICP) deep-trench technology to selectively remove the silicon underneath the TL inductors. The results show that a 112.8% (from 14.37 to 30.58) and a 201.1% (from 6.33 to 19.06) increase in Q-factor, a 9.7% (from 0.91 to 0.998) and a 28.3% (from 0.778 to 0.998) increase in maximum available power gain G Amax , and a 0.404-dB (from 0.412 to 7.6times10 -3 dB) and a 1.082-dB (from 1.09 to 8.4times10 -3 dB) reduction in minimum noise figure NF min were achieved at 30 and 60 GHz, respectively, for a 162.2 pH TL inductor after the backside ICP dry etching. The state-of-the-art performances of the on-chip TL inductors-on-air suggest that they are very suitable for application to realize ultralow-noise 30-60-GHz CMOS radio-frequency integrated circuit. In addition, the CMOS-process compatible backside ICP etching technique is very promising for system-on-a-chip applications. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2007.902988 |