Mesoscale circulations over complex terrain in the Valencia coastal region, Spain – Part 1: Simulation of diurnal circulation regimes

We collected ground-based and aircraft vertical profile measurements of meteorological parameters during a 2-week intensive campaign over the Valencia basin, in order to understand how mesoscale circulations develop over complex terrain and affect the atmospheric transport of tracers. A high-resolut...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 7; no. 7; pp. 1835 - 1849
Main Authors Pérez-Landa, G., Ciais, P., Sanz, M. J., Gioli, B., Miglietta, F., Palau, J. L., Gangoiti, G., Millán, M. M.
Format Journal Article
LanguageEnglish
Published European Geosciences Union 01.01.2007
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We collected ground-based and aircraft vertical profile measurements of meteorological parameters during a 2-week intensive campaign over the Valencia basin, in order to understand how mesoscale circulations develop over complex terrain and affect the atmospheric transport of tracers. A high-resolution version of the RAMS model was run to simulate the campaign and characterize the diurnal patterns of the flow regime: night-time katabatic drainage, morning sea-breeze development and its subsequent coupling with mountain up-slopes, and evening flow-veering under larger-scale interactions. An application of this mesoscale model to the transport of CO2 is given in a companion paper. A careful evaluation of the model performances against diverse meteorological observations is carried out. Despite the complexity of the processes interacting with each other, and the uncertainties on modeled soil moisture boundary conditions and turbulence parameterizations, we show that it is possible to simulate faithfully the contrasted flow regimes during the course of one day, especially the inland progression and organization of the sea breeze. This gives confidence with respect to future applicability of mesoscale models to establish a reliable link between surface sources of tracers and their atmospheric concentration signals over complex terrain.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-7-1835-2007