Classifying Uncertain and Evolving Data Streams with Distributed Extreme Learning Machine
Conventional classification algorithms are not well suited for the inherent uncertainty, potential concept drift, volume, and velocity of streaming data. Specialized algorithms are needed to obtain efficient and accurate classifiers for uncertain data streams. In this paper, we first introduce Distr...
Saved in:
Published in | Journal of computer science and technology Vol. 30; no. 4; pp. 874 - 887 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1000-9000 1860-4749 |
DOI | 10.1007/s11390-015-1566-6 |
Cover
Summary: | Conventional classification algorithms are not well suited for the inherent uncertainty, potential concept drift, volume, and velocity of streaming data. Specialized algorithms are needed to obtain efficient and accurate classifiers for uncertain data streams. In this paper, we first introduce Distributed Extreme Learning Machine (DELM), an optimization of ELM for large matrix operations over large datasets. We then present Weighted Ensemble Classifier Based on Distributed ELM (WE-DELM), an online and one-pass algorithm for efficiently classifying uncertain streaming data with concept drift. A probability world model is built to transform uncertain streaming data into certain streaming data. Base classifiers are learned using DELM. The weights of the base classifiers are updated dynamically according to classification results. WE-DELM improves both the efficiency in learning the model and the accuracy in performing classification. Experimental results show that WE-DELM achieves better performance on different evaluation criteria, including efficiency, accuracy, and speedup. |
---|---|
Bibliography: | Conventional classification algorithms are not well suited for the inherent uncertainty, potential concept drift, volume, and velocity of streaming data. Specialized algorithms are needed to obtain efficient and accurate classifiers for uncertain data streams. In this paper, we first introduce Distributed Extreme Learning Machine (DELM), an optimization of ELM for large matrix operations over large datasets. We then present Weighted Ensemble Classifier Based on Distributed ELM (WE-DELM), an online and one-pass algorithm for efficiently classifying uncertain streaming data with concept drift. A probability world model is built to transform uncertain streaming data into certain streaming data. Base classifiers are learned using DELM. The weights of the base classifiers are updated dynamically according to classification results. WE-DELM improves both the efficiency in learning the model and the accuracy in performing classification. Experimental results show that WE-DELM achieves better performance on different evaluation criteria, including efficiency, accuracy, and speedup. 11-2296/TP uncertain data stream, classification, extreme learning machine, distributed computing, concept drift Dong-Hong Han ,Xin Zhang ,Guo-Ren Wang(1 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; 2Key Laboratory of Medical Image Computing ( NEU), Ministry of Education, Shenyang 110819, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1000-9000 1860-4749 |
DOI: | 10.1007/s11390-015-1566-6 |