Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes

Solar cells are the most commonly used devices in customer products to achieve power autonomy. This paper discusses a complementary approach to provide power autonomy to devices on a human body, i.e., thermoelectric conversion of human heat. In indoor applications, thermoelectric converters on the s...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 7; no. 5; pp. 650 - 657
Main Authors Leonov, V., Torfs, T., Fiorini, P., Van Hoof, C.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Solar cells are the most commonly used devices in customer products to achieve power autonomy. This paper discusses a complementary approach to provide power autonomy to devices on a human body, i.e., thermoelectric conversion of human heat. In indoor applications, thermoelectric converters on the skin can provide more power per square centimeter than solar cells, particularly in adverse illumination conditions. Moreover, they work day and night. The first sensor nodes powered by human heat have been demonstrated and tested on people in 2004-2005. They used the state-of-the-art 100-muW watch-size thermoelectric wrist generators fabricated at IMEC and based on custom-design small-size BiTe thermopiles. The sensor node is completed with a power conditioning module, a microcontroller, and a wireless transceiver mounted on a watchstrap
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2007.894917